## BRAZILIAN CENTER FOR RESEARCH IN PHYSICS- CBPF / MCT www.cbpf.br







# **CBPF** - National Institute/MCT

## **Rio de Janeiro**



## **Jacques Danon**





# Magnetic and Structural Transitions in the New Fe-pnictide Superconductors

# **Elisa Baggio Saitovitch**

Julian Munevar, CBPF Mariella Alzamora, CBPF Dalber Sanchez-Candela, UFF





# **Collaborators**

Samples grown - Physical characterization

Hai Hu Wen IOP, National Superconductivity Laboratory, China

## G. F. Cheng and N. L. Wang

Institute of Physics, Chinese Academy of Sciences, Beijing, Peoples Republic of China

## S. L. Budko and P. C. Canfield

Ames Laboratory, U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, USA

### **Tomo Uemura**

Columbia University, NY, USA

#### **Graeme Luke**

**McMaster University, ON, Canada** 

**CIAM Collaboration Program (NSF/CNPq)** 





**Discoverer.** Hideo Hosono, a materials scientist at the Tokyo Institute of Technology, cooked the first of the new superconductors that have captivated researchers the world over.

# **Hideo Hosono** started with Iron-Based Layered SC: LaOFeP (Tc=6K) to $SmFeAsO_{1-x}$ (Tc= 55 K)

# Iron-based layered compound LnOFeAs "1111 phase"

S DE TODO

GOVERNO EEDERAL



The discovery of superconductivity in fluorine doped LaFeAsO superconductor with  $T_c$  = 26 K\* has generated enormous interests in the community of superconductivity





# **Iron-arsenide- 1111 and 122 Phases**









Fe has tetrahedral coordination and is formally divalent

1111 ROFeAs R=La, ....., Gd

122 AFe<sub>2</sub>As<sub>2</sub> A=Ba, Ca Sr, Eu

## The crystal is composed of a stack of alternating REO or A and FeAs layers.

\*D. Johrendt and R. Pottgen, Angew. Chem. Int. Ed. 47, 4782 (2008).



CONDENSED MATTER PHYSICS

# New Superconductors Propel Chinese Physicists to Forefront



More than 700 papers

In 2008

HFI-NQI

2010

CERN

Increase of T<sub>C</sub> of RE(O,F)FeAs superconductor after announcement by Hosono on Feb., 2008, made by Chinese physicists including PI Wang and LE Wen



# **Catalogue of Fe-based Superconductors**



## Fe-1111

LnFePO Tc~5-6 K (Tc~8.8K at Pressure ~0.8 GPa)

### LnFeAsO<sub>1-x</sub>F<sub>x</sub>

### LnFeAsO<sub>1-\*</sub>

LaFeAsO<sub>1-x</sub> 31.2 CeFeAsO<sub>1-v</sub> 46.5 PrFeAsO<sub>1-v</sub> 51.3 NdFeAsO<sub>1-v</sub> 53.5 SmFeAsO<sub>1-x</sub> 55.0 GdFeAsO<sub>1-v</sub> 53e TbFeAsO<sub>1-v</sub> 52 DyFeAsO<sub>1-v</sub> 52

#### (Ln,RE)FeAs

 $\begin{array}{ll} (La_{1-x}Sr_x)FeAsO & Tc\sim 25K(x=0.13), \ hole-doping\\ Gd_{1-x}Th_x)FeAsO & Tc\sim 56K\ (x=0.2), \ electron-doping \end{array}$ 

#### Ca(Sr)FeAsF

Ca(Fe<sub>1-x</sub>Co<sub>x</sub>)AsF Tc~22K (x=0.10) [Ni<sup>2+</sup>(3d<sup>7</sup>) → Fe<sup>2+</sup>(3d<sup>6</sup>)] Ca(Fe<sub>1-x</sub>Ni<sub>x</sub>)AsF Tc~12K (x=0.05) [Ni<sup>2+</sup>(3d<sup>8</sup>) → Fe<sup>2+</sup>(3d<sup>6</sup>)] (Sr<sub>1-x</sub>La<sub>x</sub>)FeAsF Tc~32K (x=0.4)

## Fe-122

## Fe -111

Li<sub>1-x</sub>FeAs Tc~18K

#### Fe-42622

Sc 42622 V 42622

## Fe-11

 FeSe<sub>1-x</sub>
 I C~8K (x=0.88), Tc~27 K (P~ 1.48 GPa)

 FeSe<sub>1-x</sub>Te<sub>x</sub>
 Tc~15K

 FeTe<sub>1-x</sub>S<sub>x</sub>
 Tc~10K (x=0.2), non-toxic

#### 

# GOVERNO FEDERAL CATAlogue of Fe-based Superconductors

## Fe-1111

LnFePO Tc~5-6 K (Tc~8.8K at Pressure ~0.8 GPa)

### LnFeAsO<sub>1-x</sub>F<sub>x</sub>

### LnFeAsO<sub>1-\*</sub>

LaFeAsO<sub>1-x</sub> 31.2 CeFeAsO<sub>1-v</sub> 46.5 PrFeAsO<sub>1-v</sub> 51.3 NdFeAsO<sub>1-v</sub> 53.5 SmFeAsO<sub>1-x</sub> 55.0 GdFeAsO<sub>1-v</sub> 53e TbFeAsO<sub>1-v</sub> 52 DyFeAsO<sub>1-v</sub> 52

### (Ln,RE)FeAs

 $\begin{array}{ll} (La_{1-x}Sr_x)FeAsO & Tc\sim 25K(x=0.13), \ hole-doping\\ Gd_{1-x}Th_x)FeAsO & Tc\sim 56K\ (x=0.2), \ electron-doping \end{array}$ 

#### Ca(Sr)FeAsF

Ca(Fe<sub>1-x</sub>Co<sub>x</sub>)AsF Tc~22K (x=0.10) [Ni<sup>2+</sup>(3d<sup>7</sup>) → Fe<sup>2+</sup>(3d<sup>6</sup>)] Ca(Fe<sub>1-x</sub>Ni<sub>x</sub>)AsF Tc~12K (x=0.05) [Ni<sup>2+</sup>(3d<sup>8</sup>) → Fe<sup>2+</sup>(3d<sup>6</sup>)] (Sr<sub>1-x</sub>La<sub>x</sub>)FeAsF Tc~32K (x=0.4)

CERN

## Fe-122

## Fe -111

Li<sub>1-x</sub>FeAs Tc~18K

#### Fe-42622

Sc 42622 V 42622

### Fe-11

 FeSe<sub>1-x</sub>
 I C~8K (x=0.88), Tc~27 K (P~ 1.48 GPa)

 FeSe<sub>1-x</sub>Te<sub>x</sub>
 Tc~15K

 FeTe<sub>1-x</sub>S<sub>x</sub>
 Tc~10K (x=0.2), non-toxic

#### 





Ceramic polycrystalline specimens of  $RFeAsO_{1-x}F_x$  (R=Nd, Ce) were synthesized by G F Cheng and N. L. Wang at Institute of Physics, Chinese Academy of Sciences, Beijing

Single crystals of **AFe2As2 (A=Ca,Ba, K)** were synthesized at Ames National Lab., Ames, USA and N. L. Wang

**Sr<sub>4</sub>A<sub>2</sub>O<sub>6</sub>Fe<sub>2</sub>As<sub>2</sub> (A=Sc,V)** Oxypnictides polycrystalline specimens were provided by Hai-Hu Wen, from National Lab. Superconductivity, Beijing

**µSR** performed by Uemura group in TRIUMF on some samples with participation of Julian Munevar and Dalber Sanchez

Mössbauer experiments were performed at CBPF, Rio de Janeiro with an Oxford cryostat in sinusoidal mode with transmission geometry, with <sup>57</sup>Co:Rh source and sample at the same T



## **Previous Studies**



**HFI-NQI** 

2010



- information about local symmetry and magnetic order
- **Bhf** at the <sup>57</sup>Fe nucleus, due to non collinear AF spin structure of the RE moments, acts as a **pair-breaking field** at the Ni site



TbNi2B2C

✓ Magnetism is due exclusively to R magnetic moments:

AF, FM, WFM, and SDW determined by coupling of R layers

# GOVERNO FEDERAL Superconductivity and Magnetism in HoNi2B2C

Reentrant behavior and incommensurate modulated magnetic structure for 4.6 < T < 6 |



**Evidence of pair-breaking field at the Ni** 

D. R. Sánchez, H. Micklitz, M. B. Fontes, S. L. Bud'ko and E. Baggio Saitovitch, <u>Phys. Rev. Lett</u>. 76, 507 (1996)









No Bhf field was observed at any temperature below  $T_N$  for the AFM <u>superconductors</u> ErNi<sub>2</sub>B<sub>2</sub>C and DyNi<sub>2</sub>B<sub>2</sub>C



Structures of Fe-As: RFeAO, AFe<sub>2</sub>As<sub>2</sub> and Sr<sub>4</sub>A<sub>2</sub>O<sub>6</sub>Fe<sub>2</sub>As<sub>2</sub>



Magnetic ordering:~ 140K~ 140K36 KSuperconductor:with F dop & O deficiencywithr K, Ca, Co dopingA=V

Local structure at Fe site is similar different Fe moments and 3d Fe contribution in the density of states at  $E_F$  level

HFI-NQI 2010, 12-17 September 2010 CERN, Geneva

HFI-NQI

2010





LaOFeAs has structural distortion below ~150 K

LaOFeAs has long range **SDW-type AF order** at ~134 K with  $\mu_{Fe}$ =0.36 $\mu_B$ 





HFI-NQI 2010, 12-17 September 2010 CERN, Geneva



# **NdOFeAs and CeOFeAs**

|                              | NdOFeAs             | CeOFeAs  |
|------------------------------|---------------------|----------|
| T <sub>s</sub> (P/4nmm-Cmma) | ~ 150K              | ~158K    |
| T <sub>N (Fe)</sub>          | ~ 141K              | ~ 140 K  |
| μ <sub>Fe</sub>              | $\sim 0.32 \ \mu B$ | ~ 0.6 µB |
| T <sub>N(R)</sub>            | ~ 2K                | ~ 4K     |



Fratini M, Supercond. Sci. Technol. 21, 2008.

Ying Chen, Phy. Rev. B 78, 2008.

Y. Qiu, Phys. Rev. Lett. 101, 2008.

HFI-NQI

2010

# NdFeAsO<sub>1-x</sub>F<sub>x</sub> and CeFeAsO<sub>1-x</sub>F<sub>x</sub>

Electron-doping by F<sup>-</sup> substituting for O<sup>2-</sup> increases  $T_c$  to about 50 K.



G. F. Chen, Phys. Rev. Lett. 100, 247002 (2008) and Chin. Phys. 14F12NQ4320208)12-147 September 2040al CERN, 208 neva







### **Room temperature MS**

RT NdFeAsO<sub>0.88</sub>F<sub>0.12</sub> spectrum: unique phase, similar to that found for LaOFeAs\*

 $\Delta E_Q = 0.02(2) mm/s$ IS=0.437(1) mm/s,

**RT NdFeAsO**: small impurities, **FeAs** (~ 8%) and **FeAs**<sub>2</sub> (~5%). The main component (doublet) is attributed to Fe in NdFeAsO phase and their hyperfine parameters are almost the same as for NdFeAsO<sub>0.88</sub> $F_{0.12}$ 

\*H.-H. Klauss et al., Phys. Rev. Lett **101**, 077005 (2008).



# **Results for NdFeAsO**





The magnetic transition at ~ 140K is due to the magnetic ordering of Fe moments.



**CM1**:  $\theta(I) = 90 \pm 5^{\circ}$ , commensurate AF structure with the Fe spins lying in the (*a*,*b*) **CM2**:  $\theta(II) \approx 55^{\circ}$ , all angles in the range  $0 \le \theta \le 90^{\circ}$  occur with equal probability

Below ~2K an additional increase of  $B_{hf'}$ : transferred  $B_{hf}$  at Fe due to collinear AF order of **Nd moments**.

μSR results\* support our model used to analyze our Mössbauer spectra.

#### HFI-NQI 2010A12e17, September 2017, CERN2 Geneva







Low temperature MS

*No* hyperfine magnetic field was observed at <sup>57</sup>Fe nucleus  $[B_{hf}(1.5K) \le 0.1T]$  of Fe in superconducting NdFeAsO<sub>0.88</sub>F<sub>0.12</sub> at any temperature (down to 1.5K)

Absence of magnetism in this compound



# **Results for in CeFeAsO**<sub>1-x</sub>**F**<sub>x</sub>





All spectra were fitted with single lines



The Bhf field at Fe nucleus decreases with F content and disappears for x=0.16. **Magnetism suppressed by F doping.** 





# **Results for CeFeAsO**





### **Fe spins ordering at ~145K** lying in the (*a*,*b*) plane

MS support the AFM ordering of Fe spins

A fraction of Fe spins tend to align parallel  $(B_{eff} \sim 12 \text{ T})$  and the remaining ones antiparallel  $(B_{eff} \sim 3 \text{ T})$  to the external field

## CeFeAsO under applied external field



$$B_{eff} = B_{ext} + B_{hf}$$





The Bhf in NdFeAsO and CeFeAsO can be associated to SDW AFM order of Fe spins below ~140 and ~145K, as seen by neutrons

The AFM ordering of Nd and Ce spins seen by neutrons at ~2K and ~ 5K generate additional Bhf

# No Bhf was observed at $^{57}$ Fe nucleus in NdFeAsO\_{0.88}F\_{0.12} and CeFeAsO\_{0.84}F\_{0.16} down 2K

Doping with F suppresses both the magnetic order and structural distortion in favor of superconductivity

Fe magnetic moment estimated to be ~0.35  $\mu_B$  in NdFeAsO and ~0.39  $\mu_B$  in CeFeAsO. Similar to neutron data

Coexistence (phase separation) of SC and magnetism has been observed in CeFeAsO<sub>1-x</sub> $F_x$  for 0.05 $\leq$  x  $\leq$ 0.11.



# **Ternary iron-arsenide** CaFe<sub>2</sub>As<sub>2</sub>

- Structural transition (Tetr to orthorhombic) at ~ 170K
- Order of the Fe moments, in a commensurate AF structure.





A.I. Goldman et al., Phys. Rev. B 78, 100506R (2008)



A. Kreyssig et al., Phys. Rev. B 78, 184517 (2008) Milton S. Torikachvili et al., PRL 101, 057006 (2008)

μSR → Pressure (kbar) T. Goko, Uemura, Sanchez, Saitovitch et al. Phys. Rev. B78 HFI-NQI 2010, 12-17 September 2010 CERN, Geneva

















 $V_{zz}$  in CaFe<sub>2</sub>As<sub>2</sub> was found to be parallel to *c*.

Only one Fe site showing a first order transition at  $\sim$  140K with the Fe spin lying in the (a,b) plane

Hole doped  $AFe_2As_2$  (with K or Na) shows a phase separation at low temperature with a fraction of Fe ions in a paramagnetic state while remaining ones have a magnetic moment reduced related to undoped, order magnetically  $T_0 > T_c$ .

This two phases are indistinguishable at room temperature

Same behavior is observed for Co doped BaFe<sub>2</sub>As<sub>2</sub> with the difference that in this case the doping is being performed at the Fe site

In all the cases the doping distribution seems not to be homogeneous



# Sr<sub>4</sub>A<sub>2</sub>O<sub>6</sub>Fe<sub>2</sub>As<sub>2</sub> Iron Pnictides



- (so-called 42622), with a perovskite layer between FeAs layers,
  - No SDW ordering
  - No structural transition
  - Large Fe-Fe interlayer distances (~15 Å)
  - T<sub>c</sub>= 37 K for SrVOFeAs
  - 0. 1 T transferred field to Fe in SrVOFeAs
  - No SDW in SrScOFeAs

M. Tegel *et. Al, Zeitschrift fur anogarnische und allgemeine Chemie, V 635, 2242* (2009)
X. Zhu *et. Al,* Physical Review B 79, 220512(R), (2009)
Y. L. Xie *et al,* Europhysics Letters 86, 57007 (2009)









IQI ' 0











 Possible coexistence of magnetic ordering in V atoms and superconductivity in FeAs layers in SrVOFeAs

 Magnetic ordering found for SrScOFeAs does not correspond to SDW or incommensuratecommensurate magnetic ordering





# Perspectives for Mössbauer in the studies of Unconventional SC

# Follow details at local level of magnetic transitions

Determine the structural phase transition and any special related feature





# Thank you

FAPERJ, Pensa Rio, Infra estrutura, Cientista do Estado PRONEX, CNPq (CIAM, DFG) CAPES (PROBRAL)







Elisa Baggio Saitovitch Magda Bittencourd Fontes Marcos de Castro carvalho Pesquisador Titular III (CNPq – 1A) Pesquisador Associado III Mestre Tecnologista

#### **PESQUISADORES VISITANTES ESTRANGEIROS**

Manfred Forker Hans Micklitz

#### **POS DOUTORANDOS**

Eduardo Hering Novaes Mariella Alzamora Camarena Urbano Miguel Tafur Tanta Scheilla Maria Ramos da Silva Willian Alayo Rodriguez Yutao Xing FAPERJ CLAF-CNPq CLAF-CNPq /CNPq PNPD CNPq FAPERJ FAPERJ/PCI-CNPq

#### **ALUNOS DE DOUTORADO**

Isabel Dinola Julian Munevar Cagigas Justiniano Quispe Marcatoma Kumaresavanji Malaivelusamy William Trujillo Herrera Mestre

**ALUNOS DE MESTRADO** 

Ury Denver Chacón Hernandez

FAPEAM CNPq BID CNPq-TWAS CLAF-CNPq

CNPq

**CNP**a

**CNP**a

We are looking for Pos docs to work in: Mossbauer, PAC, magnetization and transport under pressure Magnetic Multilayer, SC, Oxides, Heavy Fermions!

elisa@cbpf.br

www.cbpf.br





P. Pagliuso et al. Physica B 312-313 (2002) 129

E. Baggio-Saitovitch, D. R. Sánchez, H. Micklitz in *Rare Earth Transition Metal Borocarbides (Nitrides)*:Kluwer Academic, Dordrecht, 2001, D. R. Sánchez, E. M. Baggio-Saitovitch and H. Micklitz, P. R. B 71, 024509 (2005)



The structural distortion from the ideal FeAs tetrahedron is critical to the superconducting transition temperature

Fe is a Mössbauer probe





























 $\begin{array}{l} NdFeAsO_{0.88}F_{0.12} \\ \varDelta E_Q = 0.02(2) \ \textit{mm/s} \\ \text{IS} = 0.437(1) \ \textit{mm/s}, \end{array}$ 

 $Ba_{0.5}K_{0.5}Fe_2As_2$ 

Room temperature  $\Delta E_Q = 0.08 \text{ mm/s}$ IS=0.37 mm/s  $\Gamma = 0.22 \text{ mm/s}$  $V_{zz} \parallel c$  CaFe<sub>2</sub>As<sub>2</sub>  $\Delta E_Q$ =0.207 mm/s IS=0.44 mm/s  $\Gamma$ =0.26 mm/s  $\varphi \approx 10^{\circ}$ 

 $Sr_4Sc_2O_6Fe_2As_2$ 

IS=0.465(3) mm/s EQ=0.186(2) mm/s  $\mathbf{Sr_4V_2O_6Fe_2As_2}$ 

IS=0.411(3) mm/s EQ=0.256(2) mm/s