Physics of Glue

30 years
 of the Lund String

Yuri Dokshitzer

LPTHE, Jussieu, Paris, PNPI, St. Petersburg, Lund TH 1990-1995

Lund
09.01.2008

$\Rightarrow \quad \square Q$

We share an environment-friendly profession: to produce and share knowledge, to ask questions and try answering them.

We share an environment-friendly profession: to produce and share knowledge, to ask questions and try answering them.

An answer may happen to be obvious, once a proper question is formulated

We share an environment-friendly profession: to produce and share knowledge, to ask questions and try answering them.

An answer may happen to be obvious, once a proper question is formulated

We share an environment-friendly profession: to produce and share knowledge, to ask questions and try answering them.

Sometimes, a bright idea gets born, and the burning arrow lightens up the battleground for years to come

We share an environment-friendly profession: to produce and share knowledge, to ask questions and try answering them.

Sometimes, a bright idea gets born, and the burning arrow lightens up the battleground for years to come

Gösta Gustafson is a happy man whose quiver is packed with such arrows

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.
At the same time, microscopic dynamics - QCD - applies to invisible objects - hadron constituents quarks and gluons.

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.
At the same time, microscopic dynamics - QCD - applies to invisible objects - hadron constituents quarks and gluons.

In fact, QCD partons - quarks and gluons - are
not so "invisible".
It suffices to apply large enough energy

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.
At the same time, microscopic dynamics - QCD - applies to invisible objects - hadron constituents quarks and gluons.

In fact, QCD partons - quarks and gluons - are not so "invisible".
It suffices to apply large enough energy

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.
At the same time, microscopic dynamics - QCD - applies to invisible objects - hadron constituents quarks and gluons.

In fact, QCD partons - quarks and gluons - are not so "invisible".
It suffices to apply large enough energy to "see" a quark or a gluon flying away from the interaction point in the form of a jet of hadrons.

The physics of hadrons is our battleground.
It is uneven and muddy and full of perilous traps.
The hadron world is intrinsically complex. In the first place because the hadrons themselves are complex - composite objets.

We (or rather our friends experimentalists) observe baryons and mesons, study the properties of hadrons and their interactions.
At the same time, microscopic dynamics - QCD - applies to invisible objects - hadron constituents quarks and gluons.

In fact, QCD partons - quarks and gluons - are not so "invisible".
It suffices to apply large enough energy to "see" a quark or a gluon flying away from the interaction point in the form of a jet of hadrons.
Understanding the interface - metamorphosis of coloured quarks into "white" hadrons - remains the main, most difficult, quest and headache.

What do we know (if anything) about this "metamorphosis" ?

What do we know (if anything) about this "metamorphosis" ?
At the qualitative level we keep following "the fashion": the "classical" Kogut-Susskind vacuum breaking picture.

What do we know (if anything) about this "metamorphosis" ?
At the qualitative level we keep following "the fashion": the "classical" Kogut-Susskind vacuum breaking picture.

- In a DIS a green quark in the proton is hit by a virtual photon

What do we know (if anything) about this "metamorphosis" ?
At the qualitative level we keep following "the fashion":
the "classical" Kogut-Susskind vacuum breaking picture.

- In a DIS a green quark in the proton is hit by a virtual photon
 field
- The quark leaves the stage and the Colour Field starts building up

What do we know (if anything) about this "metamorphosis" ?
At the qualitative level we keep following "the fashion": the "classical" Kogut-Susskind vacuum breaking picture.

- In a DIS a green quark in the proton is hit by a virtual photon
- The quark leaves the stage and the Colour Field starts building up
- A green-anti-green quark pair pops up from the vacuum, splitting the system into two globally blanched sub-systems

What do we know (if anything) about this "metamorphosis" ?
At the qualitative level we keep following "the fashion": the "classical" Kogut-Susskind vacuum breaking picture.

- In a DIS a green quark in the proton is hit by a virtual photon
- The quark leaves the stage and the Colour Field starts building up
- A green-anti-green quark pair pops up from the vacuum, splitting the system into two globally blanched sub-systems

\Longrightarrow a "String" of hadrons
\Longrightarrow a "String" of hadrons
The core concept of the Lund Model

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\left\{\begin{array}{lll}\sigma & u, d \text { vs. } s \\ m e s o n s ~ v s . ~ b a r y o n s ~\end{array}\right.$

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\begin{cases}\sigma & u, d \text { vs. } s \\ \text { mesons vs. baryons }\end{cases}$

Laid the basis for universal description of hadroproduction in all kind of high energy collisions: lepton-hadron, hadron-hadron, heavy ions. (JETSET, Ariadne, Fritiof, Linked Dipole Chain, ...)

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work:

$$
\left\{\begin{array}{l}
u, d \text { vs. } s \\
\text { mesons vs. baryons }
\end{array}\right.
$$

Laid the basis for universal description of hadroproduction in all kind of high energy collisions: lepton-hadron, hadron-hadron, heavy ions.
(JETSET, Ariadne, Fritiof, Linked Dipole Chain, ...)
Carsten Peterson, Bo Söderberg,
Torbjörn Sjöstrand, Gunnar Ingelman, Leif Lönnblad, Ingemar Holgersson, Olle Mänsson, Bo Nilsson-Almqvist, Ulf Pettersson, Per Dahlqvist, Hong Pi, Jari Häkkinen, Hamid Kharraziha, Jim Samuelsson, ...

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\left\{\begin{array}{l}u, d \text { vs. } s \\ \text { mesons vs. baryons }\end{array}\right.$

Laid the basis for universal description of hadroproduction in all kind of high energy collisions: lepton-hadron, hadron-hadron, heavy ions.
(JETSET, Ariadne, Fritiof, Linked Dipole Chain, ...)
Carsten Peterson, Bo Söderberg,
Torbjörn Sjöstrand, Gunnar Ingelman, Leif Lönnblad, Ingemar Holgersson, Olle Mänsson, Bo Nilsson-Almqvist, Ulf Pettersson, Per Dahlqvist, Hong Pi, Jari Häkkinen, Hamid Kharraziha, Jim Samuelsson, ...

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work: $\left\{\begin{array}{l}u, d \text { vs. } s \\ \text { mesons vs. baryons }\end{array}\right.$

Laid the basis for universal description of hadroproduction in all kind of high energy collisions: lepton-hadron, hadron-hadron, heavy ions.
(JETSET, Ariadne, Fritiof, Linked Dipole Chain, ...)
Carsten Peterson, Bo Söderberg,
Torbjörn Sjöstrand, Gunnar Ingelman, Leif Lönnblad, Ingemar Holgersson, Olle Mänsson, Bo Nilsson-Almqvist, Ulf Pettersson, Per Dahlqvist, Hong Pi, Jari Häkkinen, Hamid Kharraziha, Jim Samuelsson, ...

\Longrightarrow a "String" of hadrons

The core concept of the Lund Model

The key features of the Lund (string) hadronization picture:

- Uniformity in rapidity: $d N_{h}=$ const $\times d \omega_{h} / \omega_{h}$
- Limited k_{\perp} of hadrons
- Quark combinatorics at work:

$$
\left\{\begin{array}{l}
u, d \text { vs. } s \\
\text { mesons vs. baryons }
\end{array}\right.
$$

The "Lund model" of a Physics School

Carsten Peterson, Bo Söderberg, Torbjörn Sjöstrand, Gunnar Ingelman, Leif Lönnblad, Ingemar Holgersson, Olle Mänsson, Bo Nilsson-Almqvist, Ulf Pettersson, Per Dahlqvist, Hong Pi, Jari Häkkinen, Hamid Kharraziha, Jim Samuelsson, ... and many-many others

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation.
Bo Andersson, G. Gustafson, C. Peterson

- Relativistic string $=$ a field "tube" connecting colour charges (quarks)

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation.
Bo Andersson, G. Gustafson, C. Peterson

- Relativistic string $=$ a field "tube" connecting colour charges (quarks)
- Dynamics \& Geometry (Wilson law)

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation.
Bo Andersson, G. Gustafson, C. Peterson

- Relativistic string $=$ a field "tube" connecting colour charges (quarks)
- Breakup and Hadrons (Yo-yo mesons)

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation. Bo Andersson, G. Gustafson, C. Peterson 1978

- Relativistic string $=$ a field "tube" connecting colour charges (quarks)
- Fluctuations (Gluon as a kink)

Much more than a mere phenomenological realization of the Kogut-Susskind scenario

A Semiclassical Model for Quark Jet Fragmentation.
Bo Andersson, G. Gustafson, C. Peterson

- Relativistic string $=$ a field "tube" connecting colour charges (quarks)
- Dynamics \& Geometry (Wilson law)
- Breakup and Hadrons (Yo-yo mesons)
- Fluctuations (Gluon as a kink)

The crucial step:

Stressing the rôle of colour topology in multiple hadroproduction

Hadrons between Jets

Near 'perfect' 2-jet event
2 well collimated jets of particles.

Near 'perfect' 2-jet event

2 well collimated jets of particles.

HOWEVER :

Transverse momenta increase with Q;

Jets become "fatter" in k_{\perp} (though narrower in angle).

Near 'perfect' 2-jet event

2 well collimated jets of particles.

HOWEVER :

Transverse momenta increase with Q;

Jets become "fatter" in k_{\perp} (though narrower in angle).

Moreover,
In 10% of $e^{+} e^{-}$annihilation events
— striking fluctuations!

By eye, can make out 3-jet structure.

By eye, can make out 3-jet structure.
No surprise : (Kogut \& Susskind, 1974)

Hard gluon bremsstrahlung off
the $q \bar{q}$ pair may be expected to
give rise to 3-jet events...

By eye, can make out 3-jet structure.
No surprise : (Kogut \& Susskind, 1974)

Hard gluon bremsstrahlung off
the $q \bar{q}$ pair may be expected to
give rise to 3-jet events...

The first QCD analysis was done by J.Ellis, M.Gaillard \& G.Ross (1976)

- Planar events with large k_{\perp};
- How to measure gluon spin ;
- Gluon jet - softer, more populated.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together. At small distances (space-time intervals) g is as legitimate a parton as q is.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together. At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50% of the proton's energy-momentum.

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g. At large distances, they are supposed to "glue" quarks together. At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.

Now, we see a gluon emitted as a "real" particle.
What sort of final hadronic state will it produce?

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g.
At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50\% of the proton's energy-momentum.

Now, we see a gluon emitted as a "real" particle.
What sort of final hadronic state will it produce?
That was the question answered by Bo, Gösta and Carsten :
Gluon \simeq quark-antiquark pair:

$$
3 \otimes \overline{3}=N_{c}^{2}=9 \simeq 8=N_{c}^{2}-1
$$

Relative mismatch: $\mathcal{O}\left(1 / N_{c}^{2}\right) \ll 1 \quad$ (the large- N_{c} limit)

How does gluon hadronize?

QCD possesses $N_{c}^{2}-1$ gauge fields - vector gluons g.
At large distances, they are supposed to "glue" quarks together.
At small distances (space-time intervals) g is as legitimate a parton as q is. The first indirect evidence in favour of gluons came from DIS where it was found that the electrically charged partons (quarks) carry, on aggregate, less than 50% of the proton's energy-momentum.

Now, we see a gluon emitted as a "real" particle.
What sort of final hadronic state will it produce?
That was the question answered by Bo, Gösta and Carsten :
Gluon \simeq quark-antiquark pair:

$$
3 \otimes \overline{3}=N_{c}^{2}=9 \simeq 8=N_{c}^{2}-1
$$

Relative mismatch: $\mathcal{O}\left(1 / N_{c}^{2}\right) \ll 1 \quad$ (the large- N_{c} limit)
Lund model interpretation of a gluon -
Gluon - a "kink" on the "string" (colour tube) that connects the quark with the antiquark

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event (recall Tornbjörn's)

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event (recall Tornbjörn's)

Now substitute a gluon for the photon in the same kinematics.

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event (recall Tornbjörn's)

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event (recall Tornbjörn's)

Lund: hadrons $=$ the sum of two independent (properly boosted) colorless substrings, made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Look at hadrons produced in a $q \bar{q}+$ photon $e^{+} e^{-}$annihilation event (recall Tornbjörn's)

Lund: hadrons $=$ the sum of two independent (properly boosted) colorless substrings, made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

The first immediate consequence :
Double Multiplicity of hadrons in fragmentation of the gluon

Comparing hadron multiplicities

Look at experimental findings

Comparing hadron multiplicities

Look at experimental findings

Lessons :

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)

Comparing hadron multiplicities

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$

Comparing hadron multiplicities

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$ however
- $\frac{d N_{g}}{d N_{q}}=\frac{N_{c}}{C_{F}}=\frac{2 N_{c}^{2}}{N_{c}^{2}-1}=\frac{9}{4} \simeq 2$ (\Longrightarrow bremsstrahlung gluons add to the hadron yield; QCD respecting parton cascades)

Comparing hadron multiplicities

Look at experimental findings

Lessons:

- N increases faster than $\ln E$ (\Longrightarrow Feynman was wrong)
- $N_{g} / N_{q}<2$ however
- $\frac{d N_{g}}{d N_{q}}=\frac{N_{c}}{C_{F}}=\frac{2 N_{c}^{2}}{N_{c}^{2}-1}=\frac{9}{4} \simeq 2$ (\Longrightarrow bremsstrahlung gluons add to the hadron yield; QCD respecting parton cascades)

Now let's look at a more subtle consequence of Lund wisdom

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Let's look into the inter-quark valley and compare the hadron yield with that in the $q \bar{q} \gamma$ event.
The overlay results in a magnificent "String effect" - depletion of particle production in the $q \bar{q}$ valley!

QCD prediction :
$\frac{d N_{q \bar{q}}^{(q \bar{q} \gamma)}}{d N_{q \bar{q}}^{(q \bar{q} g)}} \simeq \frac{2\left(N_{c}^{2}-1\right)}{N_{c}^{2}-2}=\frac{16}{7}$
(experiment: 2.3 ± 0.2)

Lund: final hadrons are given by the sum of two independent substrings made of

$$
q+\frac{1}{2} g \quad \text { and } \quad \bar{q}+\frac{1}{2} g .
$$

Let's look into the inter-quark valley and compare the hadron yield with that in the $q \bar{q} \gamma$ event.
The overlay results in a magnificent "String effect" - depletion of particle production in the $q \bar{q}$ valley!

Destructive interference from the QCD point of view

Ratios of hadron flows between jets in various multi-jet processes - example of non-trivial CIS (collinear-and-infrared-safe) QCD observable

Measurement: 1981 (JADE)

Gösta's Origami
The average cascade:

Gluon multiplication

Gösta's Origami

The average cascacle:

- Fractal structure of parton cascades
- Multiplicity anomalous dimension
- Fragmentation functions

Gluon multiplication

Gösta's Origami

- Fractal structure of parton cascades
- Multiplicity anomalous dimension
- Fragmentation functions

A dual description:
radiation of a gluon \equiv dipole \rightarrow two dipoles

Gluon multiplication

Gösta's Origami

The average cascacle:

- Fractal structure of parton cascades

- Multiplicity anomalous dimension
- Fragmentation functions

A dual description:
radiation of a gluon \equiv dipole \rightarrow two dipoles
The base for the Ariadne Monte Carlo generator

2- and 3-prong colour antennae are sort of "trivial" care of, the answers turned out to be essentially additive. The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters)

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters) especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators.
Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each
other under soft gluon radiation, and the classical picture of gluon

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent
addition to the problem
made one think of a hidden simplicity

2- and 3-prong colour antennae are sort of "trivial": coherence being taken care of, the answers turned out to be essentially additive.

The case of $2 \rightarrow 2$ hard parton scattering is more involved (4 emitters), especially so for gluon-gluon scattering.

The difficult quest of sorting out large angle gluon radiation in all orders in $\left(\alpha_{s} \log Q\right)^{n}$ was set up and solved by George Sterman and collaborators. Here one encounters 6 (5 for $S U(3)$) colour channels that mix with each other under soft gluon radiation, and the classical picture of gluon (or dipole) multiplication is likely to fail.

A recent (2005) addition to the problem (G.Marchesini \& YLD) made one think of a hidden simplicity ...

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple"

Puzzle of large angle Soft Gluon radiation

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N_{c}}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Soft anomalous dimension ,

$$
\frac{\partial}{\partial \ln Q} M \propto\left\{-N_{c} \ln \left(\frac{t u}{s^{2}}\right) \cdot \hat{\Gamma}\right\} \cdot M, \quad \hat{\Gamma} V_{i}=E_{i} V_{i}
$$

$6=3+3$. Three eigenvalues are "simple".
Three "ain't-so-simple" ones were found to satisfy the cubic equation:

$$
\left[E_{i}-\frac{4}{3}\right]^{3}-\frac{\left(1+3 b^{2}\right)\left(1+3 x^{2}\right)}{3}\left[E_{i}-\frac{4}{3}\right]-\frac{2\left(1-9 b^{2}\right)\left(1-9 x^{2}\right)}{27}=0
$$

where

$$
x=\frac{1}{N_{c}}, \quad b \equiv \frac{\ln (t / s)-\ln (u / s)}{\ln (t / s)+\ln (u / s)}
$$

Mark the mysterious symmetry w.r.t. to $x \rightarrow b$: interchanging internal (group rank) and external (scattering angle) variables of the problem ...

Some news concerning apparent complexity/hidden simplicity of gluon dynamics

Some news concerning apparent complexity/hidden simplicity of gluon dynamics

... continuing Andrjey's string of puzzles

Some news concerning apparent complexity/hidden simplicity of gluon dynamics

... continuing Andrjey's string of puzzles

Have a look at the simplest element of the parton multiplication Hamiltonian (non-singlet anomalous dimension) in three loops, α_{s}^{3}

$$
P_{\mathrm{ns}}^{(2)+}(x)=16 C_{A} C_{F} n_{f}\left(\frac { 1 } { 6 } p _ { \mathrm { qq } } (x) \left[\frac{10}{3} \zeta_{2}-\frac{209}{36}-9 \zeta_{3}-\frac{167}{18} \mathrm{H}_{0}+2 \mathrm{H}_{0} \zeta_{2}-7 \mathrm{H}_{0}\right.\right.
$$

$$
\left.+3 \mathrm{H}_{1,0,0}-\mathrm{H}_{3}\right]+\frac{1}{3} p_{\mathrm{qq}}(-x)\left[\frac{3}{2} \zeta_{3}-\frac{5}{3} \zeta_{2}-\mathrm{H}_{-2,0}-2 \mathrm{H}_{-1} \zeta_{2}-\frac{10}{3} \mathrm{H}_{-1,0}-\mathrm{H}_{-}\right.
$$

$$
\left.+2 \mathrm{H}_{-1,2}+\frac{1}{2} \mathrm{H}_{0} \zeta_{2}+\frac{5}{3} \mathrm{H}_{0,0}+\mathrm{H}_{0,0,0}-\mathrm{H}_{3}\right]+(1-x)\left[\frac{1}{6} \zeta_{2}-\frac{257}{54}-\frac{43}{18} \mathrm{H}_{0}-\right.
$$

$$
-(1+x)\left[\frac{2}{3} \mathrm{H}_{-1,0}+\frac{1}{2} \mathrm{H}_{2}\right]+\frac{1}{3} \zeta_{2}+\mathrm{H}_{0}+\frac{1}{6} \mathrm{H}_{0,0}+\delta(1-x)\left[\frac{5}{4}-\frac{167}{54} \zeta_{2}+\frac{1}{20} \zeta_{2}\right.
$$

$$
+16 C_{A} C_{F}^{2}\left(p _ { \mathrm { qq } } (x) \left[\frac{5}{6} \zeta_{3}-\frac{69}{20} \zeta_{2}^{2}-\mathrm{H}_{-3,0}-3 \mathrm{H}_{-2} \zeta_{2}-14 \mathrm{H}_{-2,-1,0}+3 \mathrm{H}_{-2,0}\right.\right.
$$

$$
-4 \mathrm{H}_{-2,2}-\frac{151}{48} \mathrm{H}_{0}+\frac{41}{12} \mathrm{H}_{0} \zeta_{2}-\frac{17}{2} \mathrm{H}_{0} \zeta_{3}-\frac{13}{4} \mathrm{H}_{0,0}-4 \mathrm{H}_{0,0} \zeta_{2}-\frac{23}{12} \mathrm{H}_{0,0,0}+5 \mathrm{H}
$$

$$
-24 \mathrm{H}_{1} \zeta_{3}-16 \mathrm{H}_{1,-2,0}+\frac{67}{9} \mathrm{H}_{1,0}-2 \mathrm{H}_{1,0} \zeta_{2}+\frac{31}{3} \mathrm{H}_{1,0,0}+11 \mathrm{H}_{1,0,0,0}+8 \mathrm{H}_{1,1,0,0}
$$

$\left.+\frac{67}{9} \mathrm{H}_{2}-2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{3} \mathrm{H}_{2,0}+5 \mathrm{H}_{2,0,0}+\mathrm{H}_{3,0}\right]+p_{\mathrm{qq}}(-x)\left[\frac{1}{4} \zeta_{2}{ }^{2}-\frac{67}{9} \zeta_{2}+\frac{31}{4} \zeta^{2}\right.$ $-32 \mathrm{H}_{-2} \zeta_{2}-4 \mathrm{H}_{-2,-1,0}-\frac{31}{6} \mathrm{H}_{-2,0}+21 \mathrm{H}_{-2,0,0}+30 \mathrm{H}_{-2,2}-\frac{31}{3} \mathrm{H}_{-1} \zeta_{2}-42 \mathrm{H}$ $-4 \mathrm{H}_{-1,-2,0}+56 \mathrm{H}_{-1,-1} \zeta_{2}-36 \mathrm{H}_{-1,-1,0,0}-56 \mathrm{H}_{-1,-1,2}-\frac{134}{9} \mathrm{H}_{-1,0}-42 \mathrm{H}_{-1}$ $+32 \mathrm{H}_{-1,3}-\frac{31}{6} \mathrm{H}_{-1,0,0}+17 \mathrm{H}_{-1,0,0,0}+\frac{31}{3} \mathrm{H}_{-1,2}+2 \mathrm{H}_{-1,2,0}+\frac{13}{12} \mathrm{H}_{0} \zeta_{2}+\frac{29}{2} \mathrm{H}$ $\left.+13 \mathrm{H}_{0,0} \zeta_{2}+\frac{89}{12} \mathrm{H}_{0,0,0}-5 \mathrm{H}_{0,0,0,0}-7 \mathrm{H}_{2} \zeta_{2}-\frac{31}{6} \mathrm{H}_{3}-10 \mathrm{H}_{4}\right]+(1-x)\left[\frac{133}{36}\right.$ $-\frac{167}{4} \zeta_{3}-2 \mathrm{H}_{0} \zeta_{3}-2 \mathrm{H}_{-3,0}+\mathrm{H}_{-2} \zeta_{2}+2 \mathrm{H}_{-2,-1,0}-3 \mathrm{H}_{-2,0,0}+\frac{77}{4} \mathrm{H}_{0,0,0}-\frac{20}{6}$ $\left.+4 \mathrm{H}_{1,0,0}+\frac{14}{3} \mathrm{H}_{1,0}\right]+(1+x)\left[\frac{43}{2} \zeta_{2}-3 \zeta_{2}^{2}+\frac{25}{2} \mathrm{H}_{-2,0}-31 \mathrm{H}_{-1} \zeta_{2}-14 \mathrm{H}_{-1,-}\right.$ $+24 \mathrm{H}_{-1,2}+23 \mathrm{H}_{-1,0,0}+\frac{55}{2} \mathrm{H}_{0} \zeta_{2}+5 \mathrm{H}_{0,0} \zeta_{2}+\frac{1457}{48} \mathrm{H}_{0}-\frac{1025}{36} \mathrm{H}_{0,0}-\frac{155}{6} \mathrm{H}_{2}$

$$
\left.+2 \mathrm{H}_{2,0,0}-3 \mathrm{H}_{4}\right]-5 \zeta_{2}-\frac{1}{2} \zeta_{2}^{2}+50 \zeta_{3}-2 \mathrm{H}_{-3,0}-7 \mathrm{H}_{-2,0}-\mathrm{H}_{0} \zeta_{3}-\frac{37}{2} \mathrm{H}_{0} \zeta_{2}
$$

$$
-2 \mathrm{H}_{0,0} \zeta_{2}+\frac{185}{6} \mathrm{H}_{0,0}-22 \mathrm{H}_{0,0,0}-4 \mathrm{H}_{0,0,0,0}+\frac{28}{3} \mathrm{H}_{2}+6 \mathrm{H}_{3}+\delta(1-x)\left[\frac{151}{64}+\right.
$$

$$
\left.\left.-\frac{247}{60} \zeta_{2}^{2}+\frac{211}{12} \zeta_{3}+\frac{15}{2} \zeta_{5}\right]\right)+16 C_{A}^{2} C_{F}\left(p _ { \mathrm { qq } } (x) \left[\frac{245}{48}-\frac{67}{18} \zeta_{2}+\frac{12}{5} \zeta_{2}^{2}+\frac{1}{2}\right.\right.
$$

$$
+\mathrm{H}_{-3,0}+4 \mathrm{H}_{-2,-1,0}-\frac{3}{2} \mathrm{H}_{-2,0}-\mathrm{H}_{-2,0,0}+2 \mathrm{H}_{-2,2}-\frac{31}{12} \mathrm{H}_{0} \zeta_{2}+4 \mathrm{H}_{0} \zeta_{3}+\frac{389}{72}
$$

$$
-\mathrm{H}_{0,0,0,0}+9 \mathrm{H}_{1} \zeta_{3}+6 \mathrm{H}_{1,-2,0}-\mathrm{H}_{1,0} \zeta_{2}-\frac{11}{4} \mathrm{H}_{1,0,0}-3 \mathrm{H}_{1,0,0,0}-4 \mathrm{H}_{1,1,0,0}+4 \mathrm{I}
$$

$$
\left.+\frac{11}{12} \mathrm{H}_{3}+\mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{67}{18} \zeta_{2}-\zeta_{2}^{2}-\frac{11}{4} \zeta_{3}-\mathrm{H}_{-3,0}+8 \mathrm{H}_{-2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-2,0}\right.
$$

$$
-3 \mathrm{H}_{-1,0,0,0}+\frac{11}{3} \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1} \zeta_{3}-16 \mathrm{H}_{-1,-1} \zeta_{2}+8 \mathrm{H}_{-1,-1,0,0}+16 \mathrm{H}_{-1,-1,2}
$$

$$
-8 \mathrm{H}_{-2,2}+11 \mathrm{H}_{-1,0} \zeta_{2}+\frac{11}{6} \mathrm{H}_{-1,0,0}-\frac{11}{3} \mathrm{H}_{-1,2}-8 \mathrm{H}_{-1,3}-\frac{3}{4} \mathrm{H}_{0}-\frac{1}{6} \mathrm{H}_{0} \zeta_{2}-4
$$

$$
\begin{aligned}
& \left.-3 \mathrm{H}_{0,0} \zeta_{2}-\frac{31}{12} \mathrm{H}_{0,0,0}+\mathrm{H}_{0,0,0,0}+2 \mathrm{H}_{2} \zeta_{2}+\frac{11}{6} \mathrm{H}_{3}+2 \mathrm{H}_{4}\right]+(1-x)\left[\frac{1883}{108}-\frac{1}{2}\right. \\
& -\mathrm{H}_{-2,-1,0}+\frac{1}{2} \mathrm{H}_{-3,0}-\frac{1}{2} \mathrm{H}_{-2} \zeta_{2}+\frac{1}{2} \mathrm{H}_{-2,0,0}+\frac{523}{36} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{3}-\frac{13}{3} \mathrm{H}_{0,0}-\frac{5}{2} \mathrm{H} \\
& \left.-2 \mathrm{H}_{1,0,0}\right]+(1+x)\left[8 \mathrm{H}_{-1} \zeta_{2}+4 \mathrm{H}_{-1,-1,0}+\frac{8}{3} \mathrm{H}_{-1,0}-5 \mathrm{H}_{-1,0,0}-6 \mathrm{H}_{-1,2}-\frac{13}{3}\right. \\
& -\frac{43}{4} \zeta_{3}-\frac{5}{2} \mathrm{H}_{-2,0}-\frac{11}{2} \mathrm{H}_{0} \zeta_{2}-\frac{1}{2} \mathrm{H}_{2} \zeta_{2}-\frac{5}{4} \mathrm{H}_{0,0} \zeta_{2}+7 \mathrm{H}_{2}-\frac{1}{4} \mathrm{H}_{2,0,0}+3 \mathrm{H}_{3}+\frac{3}{4} \\
& +\frac{1}{4} \zeta_{2}{ }^{2}-\frac{8}{3} \zeta_{2}+\frac{17}{2} \zeta_{3}+\mathrm{H}_{-2,0}-\frac{19}{2} \mathrm{H}_{0}+\frac{5}{2} \mathrm{H}_{0} \zeta_{2}-\mathrm{H}_{0} \zeta_{3}+\frac{13}{3} \mathrm{H}_{0,0}+\frac{5}{2} \mathrm{H}_{0,0,0} \\
& \left.-\delta(1-x)\left[\frac{1657}{576}-\frac{281}{27} \zeta_{2}+\frac{1}{8} \zeta_{2}^{2}+\frac{97}{9} \zeta_{3}-\frac{5}{2} \zeta_{5}\right]\right)+16 C_{F} n_{f}^{2}\left(\frac { 1 } { 1 8 } p _ { \mathrm { qq } } (x) \left[\mathrm{H}_{0,}\right.\right. \\
& \left.+(1-x)\left[\frac{13}{54}+\frac{1}{9} \mathrm{H}_{0}\right]-\delta(1-x)\left[\frac{17}{144}-\frac{5}{27} \zeta_{2}+\frac{1}{9} \zeta_{3}\right]\right)+16 C_{F}^{2} n_{f}\left(\frac{1}{3} p_{\mathrm{qq}}(x)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\frac{55}{16}+\frac{5}{8} \mathrm{H}_{0}+\mathrm{H}_{0} \zeta_{2}+\frac{3}{2} \mathrm{H}_{0,0}-\mathrm{H}_{0,0,0}-\frac{10}{3} \mathrm{H}_{1,0}-\frac{10}{3} \mathrm{H}_{2}-2 \mathrm{H}_{2,0}-2 \mathrm{H}_{3}\right]+\frac{2}{3} \\
& -\frac{3}{2} \zeta_{3}+\mathrm{H}_{-2,0}+2 \mathrm{H}_{-1} \zeta_{2}+\frac{10}{3} \mathrm{H}_{-1,0}+\mathrm{H}_{-1,0,0}-2 \mathrm{H}_{-1,2}-\frac{1}{2} \mathrm{H}_{0} \zeta_{2}-\frac{5}{3} \mathrm{H}_{0,0}- \\
& -(1-x)\left[\frac{10}{9}+\frac{19}{18} \mathrm{H}_{0,0}-\frac{4}{3} \mathrm{H}_{1}+\frac{2}{3} \mathrm{H}_{1,0}+\frac{4}{3} \mathrm{H}_{2}\right]+(1+x)\left[\frac{4}{3} \mathrm{H}_{-1,0}-\frac{25}{24} \mathrm{H}_{0}+\right. \\
& \left.+\frac{7}{9} \mathrm{H}_{0,0}+\frac{4}{3} \mathrm{H}_{2}-\delta(1-x)\left[\frac{23}{16}-\frac{5}{12} \zeta_{2}-\frac{29}{30} \zeta_{2}{ }^{2}+\frac{17}{6} \zeta_{3}\right]\right)+16 \mathrm{C}_{F}^{3}\left(p_{\mathrm{qq}}(x)[\right. \\
& +6 \mathrm{H}_{-2} \zeta_{2}+12 \mathrm{H}_{-2,-1,0}-6 \mathrm{H}_{-2,0,0}-\frac{3}{16} \mathrm{H}_{0}-\frac{3}{2} \mathrm{H}_{0} \zeta_{2}+\mathrm{H}_{0} \zeta_{3}+\frac{13}{8} \mathrm{H}_{0,0}-2 \mathrm{H}_{0} \\
& +12 \mathrm{H}_{1} \zeta_{3}+8 \mathrm{H}_{1,-2,0}-6 \mathrm{H}_{1,0,0}-4 \mathrm{H}_{1,0,0,0}+4 \mathrm{H}_{1,2,0}-3 \mathrm{H}_{2,0}+2 \mathrm{H}_{2,0,0}+4 \mathrm{H}_{2,1} \\
& \left.+4 \mathrm{H}_{3,0}+4 \mathrm{H}_{3,1}+2 \mathrm{H}_{4}\right]+p_{\mathrm{qq}}(-x)\left[\frac{7}{2} \zeta_{2}{ }^{2}-\frac{9}{2} \zeta_{3}-6 \mathrm{H}_{-3,0}+32 \mathrm{H}_{-2} \zeta_{2}+8 \mathrm{H}_{-2}\right. \\
& -26 \mathrm{H}_{-2,0,0}-28 \mathrm{H}_{-2,2}+6 \mathrm{H}_{-1} \zeta_{2}+36 \mathrm{H}_{-1} \zeta_{3}+8 \mathrm{H}_{-1,-2,0}-48 \mathrm{H}_{-1,-1} \zeta_{2}+40
\end{aligned}
$$

$$
+(1-x)\left[2 \mathrm{H}_{-3,0}-\frac{31}{8}+4 \mathrm{H}_{-2,0,0}+\mathrm{H}_{0,0} \zeta_{2}-3 \mathrm{H}_{0,0,0,0}+35 \mathrm{H}_{1}+6 \mathrm{H}_{1} \zeta_{2}-\mathrm{H}_{1},\right.
$$

$$
+(1+x)\left[\frac{37}{10} \zeta_{2}^{2}-\frac{93}{4} \zeta_{2}-\frac{81}{2} \zeta_{3}-15 \mathrm{H}_{-2,0}+30 \mathrm{H}_{-1} \zeta_{2}+12 \mathrm{H}_{-1,-1,0}-2 \mathrm{H}_{-1,0}\right.
$$

$$
-24 \mathrm{H}_{-1,2}-\frac{539}{16} \mathrm{H}_{0}-28 \mathrm{H}_{0} \zeta_{2}+\frac{191}{8} \mathrm{H}_{0,0}+20 \mathrm{H}_{0,0,0}+\frac{85}{4} \mathrm{H}_{2}-3 \mathrm{H}_{2,0,0}-2 \mathrm{H}_{3}
$$

$$
\left.-\mathrm{H}_{4}\right]+4 \zeta_{2}+33 \zeta_{3}+4 \mathrm{H}_{-3,0}+10 \mathrm{H}_{-2,0}+\frac{67}{2} \mathrm{H}_{0}+6 \mathrm{H}_{0} \zeta_{3}+19 \mathrm{H}_{0} \zeta_{2}-25 \mathrm{H}_{0,0}
$$

$$
\left.-2 \mathrm{H}_{2}-\mathrm{H}_{2,0}-4 \mathrm{H}_{3}+\delta(1-x)\left[\frac{29}{32}-2 \zeta_{2} \zeta_{3}+\frac{9}{8} \zeta_{2}+\frac{18}{5} \zeta_{2}^{2}+\frac{17}{4} \zeta_{3}-15 \zeta_{5}\right]\right)
$$

2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2×2 anomalous dimension matrix occupies
1 st loop: 1/10 page
2 nd loop: 1 page
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched
March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$

facing music of the spheres

2×2 anomalous dimension matrix occupies
1 st loop: $1 / 10$ page
2 nd loop: 1 page
3 rd loop: 100 pages (200 K asci)
Moch, Vermaseren and Vogt
[waterfall of results launched March 2004, and counting]
$V \sim\left\{\begin{array}{l}10^{\frac{N(N-1)}{2}-1} \\ 10^{2^{N-1}-2}\end{array}\right.$ not too encouraging a trend ...

How to reduce complexity?

Guidelines

Fighting complexity

How to reduce complexity?

Guidelines

exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

Extract

Solve

An essential part of gluon dynamics is Classical.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties:

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.

How to reduce complexity?

Guidelines

\checkmark exploit internal properties :

- Drell-Levy-Yan relation
- Gribov-Lipatov reciprocity
\checkmark separate classical \& quantum effects in the gluon sector

An essential part of gluon dynamics is Classical. "Classical" does not mean "Simple". However, it has a good chance to be Exactly Solvable.
\Leftrightarrow A playing ground for theoretical theory: SUSY, AdS/CFT, ...

In the standard approach,

Splitting functions

Evolution Hamiltonian

Anomalous Dimensions

- parton splitting functions are equated with anomalous dimensions;
- they are different for DIS and $e^{+} e^{-}$evolution;
- "clever evolution variables" are different too

Innovative Bookkeeping

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

In the new approach,

- splitting functions are disconnected from the anomalous dimensions;
- the evolution kernel is identical for space- and time-like cascades (Gribov-Lipatov reciprocity relation true in all orders);
- unique evolution variable - parton fluctuation time

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical : inherited from previous loops !

Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$. By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$ Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- 2loop quark transversity
- 2loop linearly polarized gluon
- 2loop singlet polarized

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- AdS/CFT $(\mathcal{N}=4 \mathrm{SYM} \alpha \gg 1)$

Reducing complexity

The origin of the GL reciprocity violation is essentially kinematical :

 inherited from previous loops !Hypothesis of the new RR evolution kernel \mathcal{P}
D-r, Marchesini \& Salam (2005)
was verified at 3 loops for the nonsinglet channel, $\left(\gamma^{(T)}-\gamma^{(S)}\right)=$ OK Mitov, Moch \& Vogt (2006)
In the moment space, the GL symmetry, $x \rightarrow 1 / x \Leftrightarrow N \rightarrow-(N+1)$, translates into dependence on the conformal Casimir $J^{2}=N(N+1)$.
By means of the large N expansion, $\quad \mathcal{P}=\alpha_{\text {phys }} \cdot \ln J^{2}+\Sigma_{n}\left(J^{2}\right)^{-n}$
Extra QCD checks: Basso \& Korchemsky, in coll. with S.Moch (2006)

- 3loop singlet unpolarized
- Also true for SUSYs,
- 2loop quark transversity
- in 4 loops in $\lambda \phi^{4}$,
- 2loop linearly polarized gluon
- in QCD $\beta_{0} \rightarrow \infty$, all loops,
- 2loop singlet polarized
- AdS/CFT $(\mathcal{N}=4$ SYM $\alpha \gg 1)$

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
$X \quad$ GLR holds for twist 3 , in $3+4$ loops
Matteo Beccaria et. al (2007)

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
x GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
X GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Maximally super-symmetric $\mathcal{N}=4 \mathrm{YM}$ allows for a compact analytic solution of the GLR problem in 3 loops ($\forall N$)

D-r \& Marchesini (2006)
Moreover, the most resent result : in $\mathcal{N}=4$
X GLR holds for twist 3, in 3+4 loops Matteo Beccaria et al. (2007)

What is so special about $\mathcal{N}=4$ SYM ?

This QFT has a good chance to be solvable - "integrable". Dynamics can be fully integrated if the system possesses a sufficient (infinite!) number of conservation laws, - integrals of motion.

Recall an old hint from QCD ...

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

Four "parton splitting functions"

$$
{ }_{q}^{q[g]}(z), \quad{\underset{q}{g}}_{[q]}(z), \quad \quad_{g}^{q[\bar{q}]}(z), \quad g_{g}^{g[g]}(z)
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z) \quad{ }_{g}^{q[q]}(z) \quad{ }_{g}^{g[g]}(z)
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

$$
{ }_{q}^{q[g]}(z) \quad{ }_{q}^{g[q]}(z), \quad g_{g}^{q[\bar{q}]}(z) \quad{ }_{g}^{g}[g](z)
$$

Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$

Three (QED) "kernels" are inter-related; gluon self-interaction stays put :

$$
{ }_{q}^{q[g]}(z), \quad{ }_{q}^{g[q]}(z), \quad{ }_{g}^{q[\bar{q}]}(z)
$$

```
g
```


Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however :

All four are related!

$$
w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underbrace{g}_{\underline{g}}{ }_{g}^{[g]}(z)}^{[}=w_{g}(z)
$$

Relating parton splittings

$$
=C_{F} \cdot \frac{1+(1-z)^{2}}{z}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

$$
=N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however : $\quad C_{F}=T_{R}=N_{c}$: Super-Symmetry

All four are related!

$$
w_{q}(z)={\underset{q}{q[g]}(z)+{ }_{q}^{g[q]}(z)={ }_{g}^{q[\bar{q}]}(z)+\underset{\underline{g}}{g[g]}(z)}_{g_{g}}=w_{g}(z)
$$

Relating parton splittings

$$
\begin{aligned}
& =C_{F} \cdot \frac{1+(1-z)^{2}}{z} \\
& =N_{c} \cdot \frac{1+z^{4}+(1-z)^{4}}{z(1-z)}
\end{aligned}
$$

$$
=T_{R} \cdot\left[z^{2}+(1-z)^{2}\right]
$$

- Exchange the decay products : $z \rightarrow 1-z$
- Exchange the parent and the offspring : $z \rightarrow 1 / z$
- The story continues, however:

$$
C_{F}=T_{R}=N_{c}: \text { Super-Symmetry }
$$

All four are related!
\equiv infinite number of conservation laws!

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
\checkmark maximal helicity multi-gluon operators

Lipatov
Faddeev \& Korchemsky (1994)
Braun, Derkachov, Korchemsky,
Manashov; Belitsky
Lipatov
Minahan \& Zarembo Beisert \& Staudacher
(1997)

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function
Lipatov
Faddeev \& Korchemsky (1994)
$\begin{array}{lr}\text { Braun, Derkachov, Korchemsky, } \\ \text { Manashov; Belitsky } & (1999) \\ \text { Lipatov } & (1997) \\ \text { Minahan \& Zarembo } & \\ \text { Beisert \& Staudacher } & \text { (2003) }\end{array}$
The higher the symmetry, the deeper integrability.

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

The integrability feature manifests itself already in certain sectors of QCD, in specific problems where one can identify QCD with SUSY-QCD :
\checkmark the Regge behaviour (large N_{c})
\checkmark baryon wave function

Lipatov
Faddeev \& Korchemsky (1994)
\checkmark maximal helicity multi-gluon operators
Minahan \& Zarembo Beisert \& Staudacher
The higher the symmetry, the deeper integrability. $\mathcal{N}=4$ - the extreme:
\boldsymbol{x} Conformal theory $\beta(\alpha) \equiv 0$
x All order expansion for $\alpha_{\text {phys }}$
Beisert, Eden, Staudacher
x Full integrability via AdS/CFT
Maldacena; Witten, Gubser, Klebanov, Polyakov

And here we arrive at the second - Divide and Conquer -issue

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons".

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Recall the diagonal first loop anomalous dimensions:

$$
\begin{aligned}
\tilde{\gamma}_{q \rightarrow q(x)+g} & =\frac{C_{F} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot \frac{1}{2}\right] \\
\tilde{\gamma}_{g \rightarrow g(x)+g} & =\frac{C_{A} \alpha_{\mathrm{s}}}{\pi}\left[\frac{x}{1-x}+(1-x) \cdot\left(x+x^{-1}\right)\right] .
\end{aligned}
$$

The first component is independent of the nature of the radiating particle - the Low-Burnett-Kroll classical radiation \Longrightarrow "clagons". The second - "quagons" - is relatively suppressed as $\mathcal{O}\left((1-x)^{2}\right)$.

Classical and quantum contributions respect the GL relation, individually:

$$
-x f(1 / x)=f(x)
$$

Let us look at the rôles these animals play on the QCD stage

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Leftrightarrow C \text {-parity, }\end{array}\right\}$ in decays, \Leftrightarrow C-parity, $\}$ in production
\Leftrightarrow colour
\checkmark minor rôle

Clagons:

x Classical Field
\checkmark infrared singular, $d \omega / \omega$
\checkmark define the physical coupling
\checkmark responsible for
\Leftrightarrow DL radiative effects,
\Rightarrow reggeization,
\Leftrightarrow QCD/Lund string (gluers)
\checkmark play the major rôle in evolution

Quagons :

x Quantum d.o.f.s (constituents)
\checkmark infrared irrelevant, $d \omega \cdot \omega$
\checkmark make the coupling run
\checkmark responsible for conservation of
$\left.\begin{array}{l}\Leftrightarrow P \text {-parity, } \\ \Rightarrow C \text {-parity, }\end{array}\right\}$ in $\begin{aligned} & \text { decays, } \\ & \text { product }\end{aligned}$
\Leftrightarrow colour
\checkmark minor rôle

In addition,
X Tree multi-clagon (Parke-Taylor) amplitudes are known exactly
\boldsymbol{X} It is clagons which dominate in all the integrability cases

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}
$$

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars; everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders !
... makes one think of a classical nature (??) of the SYM-4 dynamics

N=4 SUSY Yang-Mills

Maximally super-symmetric YM field model:
Matter content $=4$ Majorana fermions, 6 scalars;
everyone in the ajoint representation.

$$
\frac{d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)_{Q C D}^{-1}=-\frac{11}{3} \cdot C_{A}+n_{f} \cdot T_{R} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]
$$

Now, $\mathcal{N}=4$ SUSY :

$$
\frac{C_{A}^{-1} d}{d \ln \mu^{2}}\left(\frac{\alpha\left(\mu^{2}\right)}{4 \pi}\right)^{-1}=-\frac{11}{3}+\frac{4}{2} \cdot \int_{0}^{1} d x 2\left[x^{2}+(1-x)^{2}\right]+\frac{6}{2!} \cdot \int_{0}^{1} d x 2 x(1-x)
$$

- $\beta(\alpha) \equiv 0$ in all orders $!\quad \Longrightarrow \quad \gamma \Rightarrow \frac{x}{1-x}+$ no quagons !
... makes one think of a classical nature (!!!) of the SYM-4 dynamics
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in uncertain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in a not yet completely certain sense
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea. $\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

Why bother?

$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
QCD and SUSY-QCD share the gluon sector.
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !
QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$).
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$). Importantly, they constitute the bulk of the QCD anomalous dimension!
$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders !

QCD and SUSY-QCD share the gluon sector.

$$
\frac{\text { clever 2nd loop }}{\text { clever 1st loop }}<2 \% \quad\binom{\text { Heavy quark fragmentation }}{\text { D-r, Khoze \& Troyan, PRD } 1996}
$$

$\mathcal{N}=4$ SYM has already demonstrated viability of the inheritance idea.
$\mathcal{N}=4$ SYM dynamics is classical, in certain sense.
If so, the final goal - to derive γ from $\gamma^{(1)}$, in all orders!

QCD and SUSY-QCD share the gluon sector.

Clagon (classical) contributions in higher orders show up as specific "most transcendental" structures (Euler-Zagier harmonic sums $\tau=2 L-1$). Importantly, they constitute the bulk of the QCD anomalous dimension!

Employ $\mathcal{N}=4$ SYM to simplify the major part of the QCD dynamics

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects

```
Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity
respecting evolution equations (RREE)
* reduces complexity by (at leat) an order of magnitude
* improves perturbative series (less singular, better "convergent")
> links interesting phenomena in the DIS and e e}\mp@subsup{e}{}{-}\mathrm{ annihilation channels
```

\qquad

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels

- The Low theorem should be part of theor.phys. curriculum, worldwide

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide

- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude
- improves perturbative series (less singular, better "convergent")
- links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics
- A steady progress in high order perturbative QCD calculations is worth accompanying by reflections upon the origin and the structure of higher loop correction effects
- Reformulation of parton cascades in terms of Gribov-Lipatov reciprocity respecting evolution equations (RREE)
- reduces complexity by (at leat) an order of magnitude - improves perturbative series (less singular, better "convergent") - links interesting phenomena in the DIS and $e^{+} e^{-}$annihilation channels
- The Low theorem should be part of theor.phys. curriculum, worldwide
- Complete solution of the $\mathcal{N}=4$ SYM QFT should provide us with a one-line-all-orders description of the major part of QCD dynamics
- Physics of Glue whose exploration was pioneered by Gösta and Bo thirty years ago remains too rich and promising a field to retire !

