Soft Physics in Sherpa – Hadron Decays Update

Frank Siegert

09.01.2008

- The hadron decay package HADRONS
 - Features
 - Spin correlations
 - B_d mixing
- 2 Matrix elements
 - Semileptonic decays
 - Hadronic decays
 - Rare $b \rightarrow s$ decays
- 3 Decay tables
 - Features and Status
 - Inclusive observables

Features Spin correlation B_d mixing

Features of the HADRONS module

Choose decay channel

According to given branching ratios (usually from PDG) ~ later

Choose kinematics according to differential decay rate of chosen process

$$d\Gamma(P \to p_1 \dots p_n) = \underbrace{\frac{1}{2P}}_{\text{flux factor}} \cdot \underbrace{|\mathcal{M}(P, p_1 \dots p_n)|^2}_{\text{squared matrix element}} \cdot \underbrace{d\text{LiPS}}_{\text{Lorentz invariant phase space}}$$

$\rightsquigarrow \text{ later}$

Other features

- Spin correlations
- Kinematics with offshell masses for intermediate resonances
- Mixing of neutral mesons

Features Spin correlations B_d mixing

Spin correlations in $h \rightarrow \tau^- \tau^+ \rightarrow \pi^- \nu_\tau \pi^+ \bar{\nu_\tau}$

Figure: Angle between τ decay planes (theoretical predictions: M. Worek hep-ph/0305082)

Features Spin correlations B_d mixing

Spin correlations in $Z \rightarrow \tau^- \tau^+ \rightarrow \pi^- \nu_\tau \pi^+ \bar{\nu_\tau}$

Figure: Energy of the π (in Z rest frame)

Figure: Mass of the outgoing $\pi\pi$ pair

Comparison with TAUOLA: T. Pierzchala et al. hep-ph/0101311

Features Spin correlations B_d mixing

Spin correlations in $W^- \rightarrow \tau^- \bar{\nu}_{\tau} \rightarrow \pi^- \nu_{\tau} \bar{\nu}_{\tau}$

Figure: Energy of the π^- (in the W^- rest frame)

 $\begin{array}{c} {\rm Features} \\ {\rm Spin \ correlations} \\ {B_d \ mixing} \end{array}$

Mixing of neutral B mesons

mass eigenstates \neq flavour eigenstates

$$|B_{H}\rangle = p |B^{0}\rangle - q |\overline{B^{0}}\rangle \qquad |B_{H}(t)\rangle = e^{-iM_{H}t}e^{-\Gamma_{H}\frac{t}{2}} |B_{H}\rangle$$
$$|B_{L}\rangle = p |B^{0}\rangle + q |\overline{B^{0}}\rangle \qquad |B_{L}(t)\rangle = e^{-iM_{L}t}e^{-\Gamma_{L}\frac{t}{2}} |B_{L}\rangle$$

$$\Rightarrow \left| B^{0}_{\rm phys}(t) \right\rangle \sim \qquad \left(e^{i\Delta m\frac{t}{2}} e^{\Delta\Gamma\frac{t}{4}} + e^{-i\Delta m\frac{t}{2}} e^{-\Delta\Gamma\frac{t}{4}} \right) \left| B^{0} \right\rangle + \frac{q}{p} \quad \left(e^{i\Delta m\frac{t}{2}} e^{\Delta\Gamma\frac{t}{4}} - e^{-i\Delta m\frac{t}{2}} e^{-\Delta\Gamma\frac{t}{4}} \right) \left| \bar{B}^{0} \right\rangle$$

$$\Rightarrow \left| \bar{B}^{0}_{\rm phys}(t) \right\rangle \sim \quad \frac{p}{q} \quad \left(e^{i\Delta m \frac{t}{2}} e^{\Delta \Gamma \frac{t}{4}} - e^{-i\Delta m \frac{t}{2}} e^{-\Delta \Gamma \frac{t}{4}} \right) \left| B^{0} \right\rangle + \\ \left(e^{i\Delta m \frac{t}{2}} e^{\Delta \Gamma \frac{t}{4}} + e^{-i\Delta m \frac{t}{2}} e^{-\Delta \Gamma \frac{t}{4}} \right) \left| \bar{B}^{0} \right\rangle$$

Features Spin correlations B_d mixing

Explicit mixing

$$\begin{split} P(B^0 \to \bar{B}^0) &= \left| \left\langle \bar{B}^0 \right| \ B^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{q}{p} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \\ P(\bar{B}^0 \to B^0) &= \left| \left\langle B^0 \right| \ \bar{B}^0_{\rm phys}(t) \right\rangle \right|^2 \sim \left| \frac{p}{q} \right|^2 \left(\cosh \frac{\Delta \Gamma t}{2} - \cos \Delta m t \right) \end{split}$$

Frank Siegert Soft Physics in Sherpa – Hadron Decays Update

 $\begin{array}{c} \text{Features} \\ \text{Spin correlations} \\ B_d \text{ mixing} \end{array}$

CP violation in the interference

Decays to common final state f

Decay amplitudes:

$$\begin{split} \mathcal{M} \left(B^{0}_{\mathrm{phys}}(t) \to f \right) &= \left\langle B^{0} \middle| B^{0}_{\mathrm{phys}} \right\rangle \cdot \langle f \mid B^{0} \right\rangle + \left\langle \bar{B}^{0} \middle| B^{0}_{\mathrm{phys}} \right\rangle \cdot \langle f \mid \bar{B}^{0} \right\rangle \\ \mathcal{M} \left(\bar{B}^{0}_{\mathrm{phys}}(t) \to f \right) &= \left\langle B^{0} \middle| \bar{B}^{0}_{\mathrm{phys}} \right\rangle \cdot \langle f \mid B^{0} \right\rangle + \left\langle \bar{B}^{0} \middle| B^{0}_{\mathrm{phys}} \right\rangle \cdot \langle f \mid \bar{B}^{0} \right\rangle \end{aligned}$$

• Asymmetry:

$$A_{CP}(t) = \frac{\Gamma(B^{0}_{\text{phys}}(t) \to f) - \Gamma(\bar{B}^{0}_{\text{phys}}(t) \to f)}{\Gamma(B^{0}_{\text{phys}}(t) \to f) + \Gamma(\bar{B}^{0}_{\text{phys}}(t) \to f)}$$

For CP-eigenstate f_{CP} with $\lambda_{f_{CP}} = \eta_{CP} \frac{q}{p} \frac{\langle f | \bar{B}^0 \rangle}{\langle f | B^0 \rangle}$

$$A_{CP}(t) = \Im(\lambda_{f_{CP}})\sin(\Delta m_B t)$$

More general:

$$A_{CP}(t) = S \cdot \sin(\Delta m_B t) - C \cdot \cos(\Delta m_B t)$$

Features Spin correlations B_d mixing

Example: $B_d \to J/\Psi K_S$: $\Im(\lambda_{f_{CP}}) = \sin(2\beta)$

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Getting the matrix elements into HADRONS

Features

- very slim structure to quickly implement matrix elements
- ability to re-use existing currents for different matrix elements, e. g.

Status

- au decays implemented by Thomas Laubrich
- ${\ensuremath{\, \bullet }}\ B$ meson decays, most D meson decays, many light-meson decays
- two-body decay matrix elements according to spin structure
- all others can be done according to phasespace $(\mathcal{M} = 1)$

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Parametrisation example: $B \rightarrow \bar{D}\nu_l \bar{l}$

For energies $\ll m_{\rm W} \longrightarrow$ Factorisation

$$\mathcal{M} = -\mathrm{i}\frac{G_F}{\sqrt{2}}V_{cb} \ L_{\mu} \ H^{\mu}$$

B+

Leptonic current via helicity amplitudes

$$L_{\mu} = \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_l$$

Hadronic current via form factor decomposition

$$\begin{aligned} H^{\mu} &= \langle D(p_D) \, | \bar{c} \, \gamma^{\mu} \, (1 - \gamma_5) \, b | \, B(p_B) \rangle \\ &= f_+ \left(q^2 \right) \, \left((p_B + p_D)^{\mu} - \frac{m_B^2 - m_D^2}{q^2} (p_B - p_D)^{\mu} \right) \\ &+ f_0(q^2) \, \frac{m_B^2 - m_D^2}{q^2} \, (p_B - p_D)^{\mu} \end{aligned}$$

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Results: $B \rightarrow \bar{D}\nu_l \bar{l}$

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Results: $B \to \bar{D}^* \nu_l \bar{l}$

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

 $B \rightarrow \pi \nu_l \bar{l}$: Results

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Results: $B \to \bar{D}^* \pi \nu_l \bar{l}$

The hadron decay package HADRONS Matrix elements Decay tables Rare b - s decays

• reuse existing currents from semileptonic B decays and τ decays, e. g. $B \rightarrow \bar{D}\nu\bar{l}$ and $\tau \rightarrow \nu_{\tau}\pi^{+}\pi \implies B \rightarrow \bar{D}\pi^{+}\pi$

Structure of rare decays

Feynman diagram

- flavour-changing neutral current in Standard Model only in higher orders
- highly suppressed SM amplitude (four vertices, one of them V_{ts} !)
- \Rightarrow high sensitivity to BSM physics \Rightarrow need to get SM contribution right

Parametrisation of the matrix element

Ali, Ball, Handoko, Hiller: A comparative study of the decays $B \to (K, K^*)l^+l^-$ in standard model and supersymmetric theories. (hep-ph/9910221)

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Results: $B^+ \to K^+ \mu^+ \mu^-$ (non-resonant)

Semileptonic decays Hadronic decays Rare $b \rightarrow s$ decays

Results: $B^+ \rightarrow K^{*+}_{(892)} \mu^+ \mu^-$ (non-resonant)

Decay tables: Features and Status

Features

- branching ratios specified through plain text files
- independent of matrix element used for kinematics
- typically taken from PDG or theory predictions

Status

- $\bullet \ \approx 140 \ decayers$
- $\bullet\ \approx 2500\ decay\ channels$
- ${\color{black}\bullet}$ \approx 400 decay channels with matrix elements

Inclusive observables

Necessary "ingredients"

- complete decay tables for all particles
- if exclusive channels don't add up to 100 %:
 - partonic decays
 - + shower (e. g. APACIC++)
 - + fragmentation (e. g. AHADIC++)
 - \implies need properly tuned fragmentation (multiplicities)
- correct matrix elements for characteristic channels
 - (e. g. semileptonic channels \implies impact on electron spectrum)

Results

- \bullet looking at stable hadrons and leptons after a fully inclusive B^+ decay
- typical observables: multiplicities, energy spectra
- comparison with EvtGen (specialised hadron decay simulation used in the BaBar, Belle and CLEO experiments)

Features and Status Inclusive observables

Results for B^+ decay: π and K multiplicities

Features and Status Inclusive observables

Results for B^+ decay: Electron multiplicities and spectrum

Outlook

HADRONS

- HADRONS fairly complete, especially in the au and meson area
- TODO:
 - make partonic decays (of B, B_s , B_c , $c\bar{c}$, ...) more robust
 - improve baryon decays, only few form factors implemented so far
- Writing detailed physics documentation right now

SHERPA - near future

- Release of the HADRONS decay and AHADIC++ fragmentation module
- Improved underlying event model
- Fully self-contained SHERPA 1.1 in April 2008