CLIC Beam Dynamics, Alignment, Stability and Luminosity

D. Schulte

Luminosity

• The luminosity is given by

$$\mathcal{L} = H_D \frac{N^2 f_{rep} n_b}{4\pi \sigma_x \sigma_y}$$

$$\mathcal{L} \propto H_D \frac{N}{\sqrt{\beta_x \epsilon_x} \sqrt{\beta_y \epsilon_y}} \eta P$$

- ullet Efficiency η depends on beam current that can be transported
 - ⇒ decrease bunch distance ⇒ long-range transverse wakefields in main linac
 - ⇒ increase bunch charge ⇒ short-range transverse and longitudinal wakefields in main linac, other effects
- Horizontal beam size σ_x beam-beam effects, final focus system, damping ring, bunch compressors
- ullet Vertical beam size σ_y need to collide beams, beam delivery system, main linac, beam-beam effects, damping ring, bunch compressor
- Will go from IP to damping ring
 - ⇒ logical order

Beam Size Limit at IP

- The vertical beam size had been $\sigma_y \approx 1 \, \mathrm{nm}$ (BDS)
 - ⇒ challenging, cannot be reduced much
- Fundamental limit on horizontal beam size arises from beamstrahlung

Photon emission grows with beamstrahlung parameter

$$\Upsilon = \frac{2\hbar\omega_c}{3E_0} \propto \frac{N\gamma}{(\sigma_x + \sigma_y)\sigma_z}$$

- \Rightarrow Lower limit for σ_x
 - ullet In addition, horizontal emittance and beam delivery system make it difficult to achieve small σ_x

⇒ Relevant is luminosity in the peak

Beam-Beam Jitter Tolerance

- 0.2 nm beam-beam vertical position jitter leads to 1.0% luminosity loss
- Inclusion of beambeam effects finds almost the same values
 - 0.28 nm yields about 2%
 - \Rightarrow tolerance on beambeam jitter is \approx $0.28\,\mathrm{nm}$

• Limit value for enhancement of coherent beam jitter is

$$\Delta y = \frac{\Delta y_0}{1 - n_c \frac{4Nr_e}{\gamma \theta_c^2} \frac{\delta y'}{\delta \Delta y_0}}$$

$$\Delta y = 1.09 \Delta y_0$$

Final Doublet Jitter

- Final doublet jitter is most relevant source for beam jitter at IP
- One support structure
 - relative tolerance on end points $\approx 4-5\sigma_{beam-beam}$
- Two support structures
 - relative tolerance of mid points $\approx 0.7\sigma_{beam-beam}$
 - relative tolerance of end points $\approx 0.64\sigma_{beam-beam}$
- Four support structures
 - relative tolerance of mid points $\approx 0.5\sigma_{beam-beam}$
- ⇒ Only one support seems excluded

- ⇒ Chose two or four supports
 - four is conservative ($\Rightarrow 0.14 \,\mathrm{nm}$)
 - two needs additional tolerance of motion on support ($\Rightarrow 0.18 \,\mathrm{nm}$)

Main Linac Wakefield Effects

Emittance growth scales as

$$\Delta \epsilon_y \propto (W_{\perp} \sigma_z)^2 (\Delta y)^2 L_{typical} 1/G$$

- ⇒ aim for shortest possible bunch
- Energy spread into the beam delivery system should be limited to about 1% full width or 0.35% rms
- Multi-bunch beam loading compensated by RF
- Single bunch longitudinal wakefield needs to be compensated
 - ⇒ accelerate off-crest

• Limit around average $\Delta\Phi \leq 12^{\circ}$

$$\Rightarrow \sigma_z = 65 \, \mu \text{m for } N = 5.2 \times 10$$

Lattice Design

- Used $\beta \propto \sqrt{E}$, $\Delta \Phi = \mathrm{const}$
 - balances wakes and dispersion
 - roughly constant fill factor
 - phase advance is chosen to balance between wakefield and ground motion effects
- Preliminary lattice
 - made for $N = 5.2 \times 10^9$
 - quadrupole dimensions need to be confirmed
 - some optimisations remain to be done
- Total length 20867.6m
 - fill factor 78.6%

- 12 different sectors used
- Matching between sectors using 5 quadrupoles to allow for some energy bandwidth

Single Bunch Dynamic Tolerances

- For jitters we assumed no correction
 - ⇒ multi-pulse emittance is important
- Value is given for 0.1 nm emittance growth
 - quadrupole position: 0.8 nm
 - structure position: $0.7 \, \mu \mathrm{m}$
 - structure angle: $0.55 \,\mu\mathrm{radian}$
- ⇒ Tolerances are very tight
 - in particular for quadrupole
 - ATL-model 1.2 nm for 10^5 s with $A=0.5\times10^{-6}\,\mu\mathrm{m}^2\mathrm{s}^{-1}\mathrm{m}^{-1}$ using one-to-one steering
 - ⇒ tuning bumps are needed
 - for three bumps $0.45\,\mathrm{nm}$, for seven $0.25\,\mathrm{nm}$
 - ⇒ realignment every few days

Static Error Sources

- Most important are
 - BPM position errors
 - BPM resolution
 - structure to beam offset
 - structure to beam angle
 - quadrupole roll
- BPM position errors and resolution determine the final dispersion left in the beam
- Structure offsets determine the final wakefield effect in the beam
 - if the wakefields are identical in two consecutive structures, the mean offsets is important
 - if wakefields are different, scattering of structures around mean value matters should not matter for short-range wakefields could matter for long-range wakefields

Main Linac Sensitivities

Element	error	with respect to	tolerance	
			CLIC	NLC
Structure	offset	beam	$4.3(5.8) \mu \mathrm{m}$	$5.0\mu\mathrm{m}$
Structure	tilt	beam	220μ radian	$135\mu\mathrm{radian}$
Quadrupole	offset	straight line		
Quadrupole	roll	axis	$240(240) \mu \mathrm{m}$	280μ radian
BPM	offset	straight line	$0.4(0.44) \mu \mathrm{m}$	$1.3\mu\mathrm{m}$
BPM	resolution	BPM center	$0.4(0.44) \mu \mathrm{m}$	$1.3\mu\mathrm{m}$
Art. point	offset	straight line	$1.7(3) \mu { m m}$	
End point	offset	Art. point	$2.0(3.8) \mu \mathrm{m}$	

- All sensitivities for 1nm growth after one-to-one steering
- ullet Using DFS relaxes BPM position but constrains BPM resolution (example case 57 $\mu \mathrm{m}$ and 0.18 $\mu \mathrm{m}$)
- Bumps help
- ullet A bookshelfing of $1\,\mu\mathrm{m}$ corresponds roughly to an angle error of $170\,\mu\mathrm{radian}$

Misalignment Model: Module

- Sensors connect beam line to reference system
- Excellent prealignment of elements on the girders
- (G. Riddone, module working group)

Pre-Alignment Performance

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 μm	1σ
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	5 μm	<u>1</u> σ
	3	Link sensor/cradle (supporting plates, interchangeability)	5 μm	1σ
Cradle to girder	4	Link cradle/girder	5 μm	1σ
Girder to AS	5a 5b	Link girder/acc. structure Inherent precision of structure	5 μm	<u>1</u> σ
		TOTAL	14 μm	1σ
		Tolerance	40 μm	3σ

BEAM-BASED ALIGNMENT

6) relative position of structure and BPM reading

5 μm 1σ

(H. Mainaud Durand)

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference	10 μm	1σ
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	5 μm	1σ
	3	Link sensor/cradle (supporting plates, interchangeability)	5 μm	1σ
Cradle to Q	7a	Link cradle/quadrupole	5 μm	1σ
	7b Inherent precision of quadrupole		10 μm	1σ
		TOTAL	17 μm	1σ
		Tolerance	50 μm	3σ

PRE-ALIGNMENT

Ref.	1	Inherent accuracy of reference 10 µm		
Ref. to cradle	2	Sensor accuracy and electronics (reading error, noise,)	5 μm	<u>1</u> σ
	3	Link sensor/cradle (supporting plates, interchangeability)	5 μm	1σ
Cradle to BPM	8a	Link cradle/quadrupole BPM axis	5 μm	1σ
ВРМ	PM 8b Inherent precision of quadrupole BPM axis		5 μm	1σ
		TOTAL	14 μm	1σ
		Tolerance	40 μm	3σ

BEAM-BASED ALIGNMENT:

8c) relative position of quadrupole and BPM reading 1

10 μm

10

Summary of Assumed Alignment Performance

Element	error	with respect to	alignment	
			NLC	CLIC
Structure	offset	girder	$25\mu\mathrm{m}$	$5\mu\mathrm{m}$
Structure	tilts	girder	33μ radian	RF structures
Girder	offset	survey line	$50\mu\mathrm{m}$	$9.4\mu\mathrm{m}$
Girder	tilt	survey line	$15\mu\mathrm{radian}$	$9.4\mu\mathrm{radian}$
Quadrupole	offset	survey line	$50\mu\mathrm{m}$	$17\mu\mathrm{m}$
Quadrupole	roll	survey line	300μ radian	$\leq 100 \mu \text{radian}$
BPM	offset	quadrupole/survey line	$100\mu\mathrm{m}$	$14\mu\mathrm{m}$
BPM	resolution	BPM center	$0.3\mu\mathrm{m}$	$0.1\mu\mathrm{m}$
Structure BPM	offset	wake center	$5\mu\mathrm{m}$	$5\mu\mathrm{m}$

- Tolerances depend on the beam based alignment method
 - e.g. can trade-off BPM resolution against BPM alignment
- Budgets need a trade-off between different effects

Beam-Based Alignment and Tuning Strategy

- Make beam pass linac
 - one-to-one correction
- Remove dispersion, align BPMs and quadrupoles
 - dispersion free steering
 - ballistic alignment
- Remove wakefield effects
 - accelerating structure alignment
 - emittance tuning bumps
- Tune luminosity
 - tuning knobs
- currently noise during correction is being studied (e.g. beam or quadrupole jitter)

Dispersion Free Correction

- Basic idea: use different beam energies
- Accelerate beams with different gradient and initial energy

• Optimise trajectories for different energies together:

$$S = \sum_{i=1}^{n} \left(w_i(x_{i,1})^2 + \sum_{j=2}^{m} w_{i,j}(x_{i,1} - x_{i,j})^2 \right) + \sum_{k=1}^{l} w'_k(c_k)^2$$

- Last term is omitted
- Idea is to mimic energy differences that exist in the bunch with different beams

Beam-Based Structure Alignment

- Each structure is equipped with a BPM (RMS position error $5 \mu m$)
- Up to eight structures are mounted on movable girders
- ⇒ Align structures to the beam
 - A study had been performed to move the articulation points
 - negligible additional effect if additional articulation point exists at quadrupoles
 - For wakes that are identical in each structure
 - relevant is error of structure BPM to structure centre
 - For wakes that differ from structure-tostructure
 - relevant is structure to beam offset

DFS Results

- ⇒ With RF alignment we can have more then 90% of the machines below 5nm
- \Rightarrow But not much margin

Long Distance Alignment

- Beam line elements are more difficult to align over long distances
 - we are investigating the alignment performance for this case
 - testing good material for long distance wires
- Simulation results to illustrate the point

⇒ The alignment tolerance depends on the correction method

Conclusion

- Element stability is vital for CLIC
 - very tight tolerance at interaction point
 - nanometer tolerance on all main linac quadrupoles
- Pre-alignment of beam line elements is vital
 - in particular good survey line over long distance
 - good alignment of BPMs to survey
 - good alignment of BPM to quadrupole (cost)
 - good alignment of structures on girder
 - precise structure fabrication
 - good structure BPM precision