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Sphere / Plane geometry

DC spark testing experimental setup
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DC spark test – surface damage
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DC spark test: aims

Past - looking for the highest gradient:
• (Prove that DC breakdown testing was relevant for RF application)

Id if i l h i hi h b kd fi ld h• Identify materials having a higher breakdown field than copper -> 
molybdenum

• Identify treatments to increase the conditioning rate of molybdenum -> heat 
treatment

• Identify vacuum conditions that allow attaining the full breakdown field -> 
results available

Future - looking for the lowest breakdown rate at the new CLIC parameters:
• DC breakdown rate on different materials• DC breakdown rate on different materials
• Identify the necessary surface treatments depending on the chosen 

fabrication technology, focussing on copper (see next presentation)
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Comparison DC - RF

Max. surface 
field in RF 

[MV/m][MV/m]
(DC)E breakd

sat

260164±30Cu

420438±32Mo

340313±47W

420438±32Mo

DC and RF breakdown measurements give similar g
breakdown fields (PRST-AB 10, 042001 (2007))

Superior behavior of both Mo and W with respect to Cu.p p
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Typical conditioning curves – pure metals
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Typical conditioning curves – more exotic
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New materials

• The guidelines that have led to the choice of refractory metals as newThe guidelines that have led to the choice of refractory metals as new 
candidate materials for the high-field regions are the high melting point, the 
low vapour pressure

• Experimental evidence (either in DC or RF) indicates that these criteria are 
not sufficient. For example:

Mechanical fragility hinders the performance of W– Mechanical fragility hinders the performance of W
– The surface oxide plays a strong role in the conditioning behaviour of Mo 
– The machining process affects the performance of Cu alloys

??? k th t th f f Ti i d b t hi hl t bl– ??? makes that the performance of Ti is very good but highly unstable

• New materials alone are useless without a strategy for bimetal fabrication.
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Reducing conditioning time: heating of Mo

• We have strong evidence that heating is beneficial for the conditioning rateWe have strong evidence that heating is beneficial for the conditioning rate 
of molybdenum, and that this is due to the reduction of surface oxides.

• Tests showed that Mo can be re-exposed to air only for a limited amount of 
time after heat treatment (<8h) otherwise oxides build up againtime after heat treatment (<8h), otherwise oxides build up again

• This will (soon?) be tested in molybdenum HDS structures
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Gas release (Mo case)

Added gases in the vacuum chamber results 
in reduced breakdown limit.

In CLIC structures there might be gas 
released from previous breakdowns and not 
sufficiently evacuated.
First data (in particular for Mo) are available 
for the calculation of the vacuum system
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Breakdown rate: RF
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Breakdown rate: DC
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Breakdown rate: future

• A new DC spark system is being built (~2 months)A new DC spark system is being built ( 2 months)
• First experiments will be aimed at proving that the results in DC are relevant 

for the RF breakdown rate studies (~3 months):
Log(p) dependence on applied field– Log(p) dependence on applied field

– Different slopes of Cu and Mo
• Then the experiments should be aimed at studying the effect of surface 

preparation on breakdown rate ( 2008) (see next presentation)preparation on breakdown rate (~2008) (see next presentation)

• Two theoretical models are the guidelines for the understanding: 
– Field emission + ionisation of metallic vapours produced by Joule heating
– Fatigue related to thermal stress due to Joule heating

• Manpower:
1 PostDoc Fellow (Antoine Descoeudres started 1 1 2007)– 1 PostDoc Fellow (Antoine Descoeudres, started 1.1.2007)

– 1 Technical Student (Yngve Levinsen, started 1.7.2007) 
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The problem of fatigue

CLIC number of cycles (old parameters):
Repetition rate 150 Hz
Estimated lifetime 20 years

9 months / year
7 d / k7 days / week
24 hours / day

Total N 7 x 1010Total N 7 x 10
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Fatigue – Wohler curve
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Comparison of heating profiles
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Laser fatigue testing

• Surface of test sample is heated with pulsed laser. Between the pulses the heat is p p p
evacuated into the bulk.

• The laser fatigue is assumed to be close to RF fatigue.
• The operating frequencies of the apparatus available are 20 and 200 HzThe operating frequencies of the apparatus available are 20 and 200 Hz.
• Scope: Low cycle regime, up to 107.
• Observation of surface damage with electron microscope.

f S• The surface damage is characterized by SEM observations and roughness 
measurements.
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Laser surface damage

CuZr, 10 Mshots, 0.15 J/cm2, 
ΔT =  120 K, σ = 170 MPa,

under high vacuum (turbopump)

CuZr reference
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CuZr – illustration of laser data
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Ultrasonic fatigue testing

C li h i l t i f t i l t• Cyclic mechanical stressing of material at 
frequency of 24 kHz.

• Scope: High cycle regime, 107 - 1011 cycles
• High cycle fatigue data within a reasonable testingg y g g

time. CLIC lifetime 7x1010 cycles in 30 days.

Amplitude

Diamond turned test samples

Amplitude
measurement
system

Default: Reversed condition
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US and laser data
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Surface roughening in US testing
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More fatigue ?

• Fatigue is a statistical phenomenon. Statistical information is still missing in 
our study on samples, in particular for the laser data.

• The technological choice for fabrication has strong influence on fatigue 
resistance:

– A thermal treatments zeroes most of the advantage of CuZr, or the benefits from 
cold working

– Surface finishing certainly has a strong influence on crack generation

• The mechanism leading to the development of fatigue (accumulation of 
dislocations, formation of slip bands) is not well understood -> Stefano
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Breakdown rate: reasons for surface treatments
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quadrant structures

Surface quality: on copper

HDS60

milling milling

milling best result
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Possible surface treatments (mainly copper)

• It is necessary to identify a procedure to remove surface defects from 3D 
milled structures.

• SLAC applies etching + heat treatment for RF copper structures
• KEK has DC breakdown tests on heat treated copper

• At CERN we have considerable experience both in copper polishing and 
heat treatment.

• Suitable procedures should be identified in order to maintain the tight 
tolerances obtained from machining, while still improving the surface
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SLAC results

• The combined effect of machining and chemical surface treatments on the 
conditioning rate and breakdown limit have been studied in RF at SLAC. 
More data are however needed in particular on breakdown probability

• It is as yet unknown whether the effects are due to changes to the oxide, to 
the outgassing, to topography, to cleanliness, or combined?

TS day on CLIC 5 July 2007 Sergio Calatroni 30



KEK results
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Effects of machining

• All DC spark testing has been carried out on rolled metal sheets (with a fewAll DC spark testing has been carried out on rolled metal sheets (with a few 
exceptions).

• All RF testing has been done on turned or milled structures

• One example of the effect of machining from our DC spark testing: Glidcop

Esat = (112 ± 4) MV/m Esat = (115 ± 3) MV/m
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Surface treatments: HPWR and SC-cavity like treatments?

Structure HDS 30 GHz

Buse

Structure HDS 30 GHz
Support

Pl

4 places
Plateau 
tournantCanne creuse

High Pressure Water rinsing and Clean 
Room operations are standard practice Room operations are standard practice 
in the world of superconducting cavities
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Iris 1Defects in milling revealed – and then maybe reduced

25 bars
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Traveling wave structure heavy transverse mode damping detuning

HDS and WDS

Traveling wave structure, heavy transverse mode damping, detuning

Two main types under consideration – Hybrid Damped Structure (HDS), 
Waveguide Damped Structure (WDS).

HDS: better for pulsed surface WDS l i k f h d b kd

TS day on CLIC 5 July 2007 Sergio Calatroni 35

HDS: better for pulsed surface 
heating, quadrant assembly necessary

WDS: less risk of enhanced breakdown 
at iris, disk or quadrant assembly
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Possible work programme

• Identify possible etching solutions characterise etching rate effect onIdentify possible etching solutions, characterise etching rate, effect on 
roughness (~3 months)

• Test effectiveness on 3D milled structures + quality control (SEM, 
metrology) (~3 months)metrology) ( 3 months)

• Heat treatments (combined with etching): study the effects on topography, 
outgassing (~6 months) 
DC b kd t d f th bi d ff t f t hi d h t t t t• DC breakdown study of the combined effects of etching and heat treatment 
(~2008)

• Manpower: this need has been identified only recently, 
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Looking further

• High-temperature heating heavily affects all mechanical properties (fatigue)High temperature heating heavily affects all mechanical properties (fatigue)
• -> Need for a different but equally effective surface treatment
• Ideas tested (partially) at CERN:

l t t t f id l ( ld it b d i it i RF t t ?)– plasma treatment for oxide removal (could it be done in-situ in RF structures?)
– e-beam heating (ex-situ local heating),

• We could also foster ideas in other domains:
– Fabrication of complex waveguides and RF plumbing by electroplating, directly p g p g y p g, y

incorporating flanges.
– Cr-Cu bi-metal fabrication by electroplating

• In both cases the work could be done by industrial contractors, with CERN y ,
guidance (expertise needed for obtaining the requested material qualities)

• Testing and qualification done at CERN
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The end
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Reminder of old images of disc structures.
Side tilted views x200.

CTF2 Mo 1CTF2 Mo 1ststSLAC Mo 1SLAC Mo 1stst

100 µm200 100 µm200x

CTF3 Mo 30CTF3 Mo 30thth

100 µm200x

CTF3 Mo 1CTF3 Mo 1stst

100 µm200x

100
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Beta calculations from SEM observation - Mo

DC spark values: around 30

15 20
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Comparison with breakdown rate measurements?

Th l t t i i b th t d d F l N dh i ti• The electron current is given by the standard Fowler-Nordheim equation:

)(
2

EFNIelectrons β=

• The constant includes the emitter area

)exp()(*)( 2
E

BEConstEFN βββ −=

• The gas molecules that get ionised (and allow me this far-fetched 
assumption!) are indeed the metal vapours created at the tip of the emitters, 
because of Joule heating by the F-N current. 

• It is very difficult to use the full heating model seen before. I made the very 
crude assumption that the temperature grows with (time)0.5 and scales 
in ersel ith the (thermal cond cti it )0 5inversely with the (thermal conductivity)0.5.

• The vapour pressure is then given by: 

)exp( 0
0

H
pp

−
=

• Where H0 is the heat of vaporisation and R the gas constant. p0 is a 
normalisation factor, there is a ratio of approximately 10^2.5 between Mo 
and Cu

)p(0 RT
pp
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Fit to Mo data, 30 GHz circular iris

• β = 30 k = 138 Wm-1K-1 p0 = 10^14.5 mbar H0 = 598 kJ/molβ  30, k  138 Wm K , p0  10 mbar, H0  598 kJ/mol
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Keeping the same fit parameters and comparing to Cu data, 30 GHz

• β = 45 k = 400 Wm-1K-1 p0 = 10^12 mbar H0 = 300 kJ/molβ  45, k  400 Wm K , p0  10 mbar, H0  300 kJ/mol.
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All fatigue data
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Depth Profile - Mo

Net Missing Volume:

474914 5 μm3474914,5 μm3

297 μm3/spark

~3 ng/spark 
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