DESIGN WORK FOR THE TECHNICAL INFRASTUCTURES

- 1 TS CONTRIBUTION
- 2 MAIN PROBLEMS / CHALLENGES
- 3 LAYOUTS AND SECTIONS
- 4 NEXT STEPS

JL Baldy

TS DAY ON CLIC 5.07.07

DESIGN WORK FOR THE TECHNICAL INFRASTUCTURES

1 - TS CONTRIBUTION (1)

- Preliminary Design phase aiming at establishing feasibility of the project at a "reasonable" cost for 2011.
- 3 chapters are to be developed within TS:
 - Site mapping, design and costing of Civil Engineering and other TS infrastructures (CV, EL, HM, CSE, SU)
 - Design and making of accelerating structures (MME)
 - Alignment of components (SU)
- TS will also contribute to the Time Scheduling of the project
- TS point of contact: Hans Braun and Carlo Wyss for the costing aspects

DESIGN WORK FOR THE TECHNICAL INFRASTUCTURES

1 - TS CONTRIBUTION (2)

- TS Contribution to the CLIC Project Design in the recent past and the near future :
 - Handed over to AB in June:
 - The general layouts and longitudinal section
 - A set of drawings of main CE underground structures
 - A tentative list of surface buildings
 - To be handed over to AB by mid September:
 - Civil Engineering cost estimates (Surface Underground Site development) with the same level of precision as was done for the ILC RDR
 - Cost estimates for the other TS systems based on proratas but corrected by related groups at their present best knowledge of solutions likely to be retained
 - Specific cost estimates for Survey and Alignment

DESIGN WORK FOR THE TECHNICAL INFRASTUCTURES

2 - MAIN PROBLEMS / CHALLENGES TO BE ADRESSED BY TS (Not exhaustive!)

- Refined setting of the layout (Altitude and plan) taking into account :
 - The geological and hydrological constraints
 - The environments constraints (Both in F and CH, how to mitigate)
 - The cost of the TS infrastructure (Best value for money)
- Decision on the cooling system to be adopted
 - Closed circuit with cooling towers?
 - Open circuit with water from the lake?
- Decision and dimensioning of a new 400 KV sub-station
 - Is the RTE line sufficient?
 - What to be added, what to be replaced?
 - Basic hypothesis (likely CLIC and LHC-SPS not together)
- Review all safety aspects
- How to align the components of the machine with the required precision?

CI	LIC						
L	ongit	udir	nal s	ectio	n		
1:	100'00	0/20	00				
Tests	AMB	ditti bagannia	n wat, beine		ete eta		
Trade Flere.	- I continue in the		D D	eraemin, s	0	Formet	45/63
Trade Flere.		ditti bagannia	B B				45/63 13.07.0
Rev. Deturn	- I continue in the	ditti bagannia	0			Formet	
Date Rev.	13.06.07	ditti bagannia	D D			Formet Plot-Setum	
Rev. Deturn Gez.	13.06.07 FStu	ditti bagannia	D D			Formet Plot-Setum	

W:\Aibrdata\G017 CLIC\ACAD\Längenprofil_01.dwg

SUPERVISEUR : C.WYSS DESIGNER : N.BADDAMS

DESIGN WORK FOR THE TECHNICAL INFRASTUCTURES

4 - NEXT STEPS (UNTIL 2011) - TS EXCEPT MME

- Take an active part in the feasibility studies in close cooperation with AB
- Discuss, advice and possibly adopt proposed changes
- Investigate (more in depth) environmental and geological aspects
- Propose solution(s) to optimize TS systems (CV + EL challenges + many others)
- Refine costs of all TS systems (from pro-rata to actual)
- Pursue R+D within SU Group aiming at selection of equipment and methods