

Accelerating structures: goals and requirements

What is required for the machine:

Best efficiency and cost for given luminosity and energy

Constraints:

- breakdown rate (BDR), scaling as a function of (P, τ, C): 10⁻⁶
 BDR is a practical BDR (loss of 10% luminosity with 10⁵ structures)
- pulsed surface heating: limit $\Delta Tmax$ (fatigue) to withstand about 10^{11} cycles
- beam dynamics (keep low beam emittance, reduce wake fields...)

Other reasonable conditions:

- an achievable gradient close to optimum to be proved by 2010:
 100MV/m (for appropriate pulse length)
- -achievable accuracy and shape for the structure that must be manufactured

Is 100MV/M, 10⁻⁶ BDR achievable with OFE-copper? Yes

(Adapted from S.Doebert)

Still something remains to be demonstrated:

Efficient damping of perturbing RF modes should be implemented (the T53 structure does not have)

Manufacturing technology

100MV/m: it is likely that conditioning at slightly higher field is needed Surface prep., thermal treatment

T53 was annealed OFE-copper: it is not proved that this holds 10¹¹ fatigue RF cycles material

Different technologies of manufacturing and assembly

(Adapted from S.Doebert) 5/7/2007 TS_CLIC_AB

M.Taborelli, TS-MME

Higher gradient with other materials? Molybdenum

If we understand breakdown can we make Mo like this?

A single slope for Cu and many slopes of Mo....

Conclusions:

Base material for the structures is copper (...alloy)

- introduce damping, understand difference quadrant disk
- control surface finishing from manufacturing (TS)
- optimize surface/thermal treatment, cleaning (TS)
- prove fatigue resistance or find better copper-alloy (TS)
- achieve required shape accuracy (TS)

Parallel development on material R&D for higher gradient:

- DC-spark testing (TS)
- Bi-metal is needed: development of a joining method to join a refractory metal to a copper alloy (TS)
- Machining of refractory metals (TS)