# Towards an X-Band Power Source at CERN and a European Structure Test Facility

Erk Jensen and Gerry McMomagle CERN

## Present situation

Existing mid-linac power station test facility



#### Plan

- The Two-beam Test Stand (2TBTS) will eventually be our structure test facility.
- It will be operational for structure tests from 2009 (but only up to 140 ns pulse length!)
- We could transform the mid-linac power station to 12 GHz?, but
  - it would not be ready before 2BTS,
  - it would interfere with other CTF3 commissioning,
  - it could not be operated in parallel with 2BTS,
  - while transforming, we wouldn't have no facility at all.
- We continue and intensify tests at 11.424 GHz, both at SLAC and KEK.
- But we really need a stand-alone test stand soon!
- This need is not new!

## In 2005, I wrote\*):

- During CTF3 construction phase, limited time available to produce 30 GHz power.
  - Test 4...5 structures/year + waveguide components + pulse surface heating experiments?
- CTF3 runs at ≈ 10 Hz (limit 50 Hz), which is low for conditioning Mo or W structures.
  - ◆ Tests of Mo structures at SLAC indicate a factor 10 lower "conditioning rate" than Cu!
- CTF3 is a test facility, not a production accelerator.
  - Only one 30 GHz output from CTF3!

This is why we need a reliable, stand-alone 30 GHz power source: > 160 MW, > 70 ns, > 100 Hz

The frequency has changed, but many arguments are still valid today.

<sup>\*)</sup> at the SLAC meeting where the US High Gradient Collaboration was established

#### Parameters

Ideal Parameters of an X-band Test-stand:

- (new) CLIC and CTF3 frequency: 11.9942 GHz
- Repetition rate: high (50 Hz or higher)
- Power and pulse length: variable
- For example:

200 MW - 100 ns, 100 MW - 350 ns,80 MW - 500 ns

 This can be implemented using pulse compression



## Test facility based on a single klystron



## Test facility based on two klystrons



#### A remarkable coincidence:

Just as we identified our need, so did 3 other labs in Europe:

- PSI Villingen for the "PSI-FEL project"
- Sincrotrone Trieste for "FERMI @ Elettra"
- LNF Frascati for SPARC/SPARX



#### The PSI-FEL project (from M. Pedrozzi's presentation)

#### 250 MeV injector facility - accelerator layout (Courtesy of René Bakker - in progress)





- (1) HV pulser
- (2) 2 cells-2 freq. cavity
- (3) L-band TW structures
- (4) S-band TW structures
- (5) X-band harmonic cavity
- (6) quadruple triplets
- (7) compression chicane
- (8) deflecting cavity

#### FERMI@ELETTRA

FERMI project (from G. D'Auria's presentation)





**FERMI**@elettra

#### Available:

- 8 Klystron stations;
- 9 Accelerating sections:
  - 2 FW TW 3 m
  - 7 BW\_TW 6 m
- 7 Accelerating sections donated by CERN.







#### FERMI project (from G. D'Auria's presentation)





## Light Sources - why X-band?



Bunch phase space at exit of 1st bunch compressor.

Harmonic system (S-band acceleration) to linearize phase space for better FEL performance



#### A remarkable coincidence:

Just as we identified our need, so did 3 other labs in Europe:

- PSI Villingen for the "PSI-FEL project"
- Sincrotrone Trieste for "FERMI @ Elettra"
- LNF Frascati for SPARC/SPARX

These labs are looking for initially 20 to 30 MW (for phase space linearization).

It seems like a really good idea to join forces.

So we got together and agreed on common klystron parameters:

11.9942 GHz, 50 MW peak, 1.5 µs, 50 Hz

## This happens to be similar to SLAC's XL4

| Parameter             | Value  | Units |
|-----------------------|--------|-------|
| Operating frequency   | 11.424 | GHz   |
| RF pulse length       | 1.5    | μsec  |
| Peak output power     | 50     | MW    |
| Pulse repetition rate | 60     | Hz    |
| Efficiency            | 40     | %     |
| Gain                  | 50     | dB    |
| Bandwidth             | 25     | MHz   |
| Perveance             | 1.2    | μPerv |
| Beam voltage          | 410    | kV    |

... only the frequency needs a 5 % tweak.

### The klystron is well feasible

- European Industry (Thales, E2V, TMD) have no relevant experience.
- SLAC or Toshiba could build such a klystron
  - and in fact, both have given us some very positive indications including delay and cost.

| Indicative estimates |           | Toshiba               |           | SLAC                 |  |  |  |
|----------------------|-----------|-----------------------|-----------|----------------------|--|--|--|
| Design and prototype | 990 kCHF  | 15 months             | 665 kCHF  | 18 months            |  |  |  |
| Production tube      | 580 kCHF  | 10 months after proto | 485 kCHF  | 6 months after proto |  |  |  |
| Total cost           | 1570 kCHF |                       | 1150 kCHF |                      |  |  |  |

- ◆ The scaling from 11.4 GHz to 12 GHz requires only little change.
- Important to us (in addition to the technical specification)
  - \* minimum risk
  - \* shortest delay
  - \* reliable operation

## Overall "short term" klystron needs in Europe

|         | 2008 | 2009   | 2010  |
|---------|------|--------|-------|
| CERN    | 1    | (+1)   | 0     |
| LNF     |      | 1      | 1 (?) |
| PSI     |      | 1 (+1) |       |
| Elettra | 1    |        |       |

There is an immediate need of 2 klystrons, with an option of 2 to 5 more.

## Pulse compression



We have TM<sub>01</sub> line (Ø 50 mm) available for up to 160 ns. This was meant for 30 GHz — for 12 GHz we would prefer Ø 90 mm.

#### Power gain for 1.5 µs klystron pulse



from Igor

#### Possible location



Advantages:

existing infrastructure (water, electricity, bunker, controls) proximity to 2BTS

## A possible schedule

|                                                    |   | 2007 |   |   |    |    |    |   | 2008 |   |   |   |   |   |   |   |    |    | 2009 |   |   |   |   |   |   |   |
|----------------------------------------------------|---|------|---|---|----|----|----|---|------|---|---|---|---|---|---|---|----|----|------|---|---|---|---|---|---|---|
|                                                    | 6 | 7    | ∞ | 9 | 10 | 11 | 12 | 1 | 2    | ω | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | 1 | 2 | ω | 4 | 5 | 6 | 7 |
| Klystron Price Enquiry                             |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Finance Committee Approval                         |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Order Klystron                                     |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Klystron design                                    |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| 1st Klystron Manufacture and Delivery              |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| 2nd Klystron Manufacture and Delivery              |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Modulator Price Enquiry                            |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Finance Committee Approval                         |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Modulator Manufacture and Delivery                 |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Preparation of Modulator area                      |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Procurement and preparation of auxiliaries         |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Preparation of test area                           |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Procurement and manufacture of test area equipment |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| Low level RF                                       |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |
| START TEST STAND COMISSIONING (single klystron)    |   |      |   |   |    |    |    |   |      |   |   |   |   |   |   |   |    |    |      |   |   |   |   |   |   |   |

## Resulting possible number of tests at CERN

#### From Steffen's talk this morning

|                     | 2007 |  | 2008 | 2009 | 2010 | sum |
|---------------------|------|--|------|------|------|-----|
| 30 <i>G</i> Hz      | 5    |  | 3    | 0    | 0    | 8   |
| 12 GHz              | 0    |  | 1    | 4    | 4    | 9   |
| 11.4 GHz            | 2    |  | 4    | 4    | 4    | 14  |
| Stand alone at CERN | 0    |  | 0    | 8    | 8    | 16  |
| sum                 | 7    |  | 8    | 16   | 16   | 47  |

#### Summary

- The XBKTS\*) (X-band Klystron Test Stand) is in reach and it will be implemented.
- There is strong common interest with planned European light-sources (PSI, LNF, Elettra), which will be fully exploited (in a sort of "joint-venture").
- The facility is based on a klystron very similar to those developed and built for NLC.
- The total cost of a facility is estimated around 2.7 MCHF or 1.6 M€ or 2.2 M\$ plus 4 FTEy.
- It will be operational in early 2009.

