Structure fabrication techniques and possibilities

M.Taborelli

Disk structures

Quadrant structures

....most of it inspired by 30GHz tests and experience

disk structures

Copper, disk structures

- Machining by diamond turning: shape accuracy of 2-3 μm in the iris region
- -alignment of the disks on V-shaped marble before assembly in a stack: use external "cylinder" surface as reference.
- -assembly by vacuum brazing or by bolting
- -achieved accuracy?

18/

30 GHz copper structures: surface quality

Detector = SE1 1mm 3down CLIC Cu-OFE segments achard25

Recrystallization after thermal treatment (vacuum brazing cycle at 820 C)

disk structures

Disk structures: other materials and configuration for bimetal

- -Diamond turing with insert. Successfully tested with Mo and W irises (single iris or full structure)
- -Insert of complete iris in new material or bi-metal (for iris tip only)
- -Assembly by clamping (bolting) only, because of the difference in thermal expansion; potential problem for proper electrical contact (oserved copper transfer on refractory metal)

disk structures

Copper disks with damping (SLAC design)

- -Turning is no longer sufficient, milling is necessary to produce the radial slits
- Full 3D milling is needed to avoid steps and burrs

M.Taborelli, TS-MME

Why +/- 1 microns precision?

- 0. Frequency matching (about 4MHz deviation per μm on cavity radius at 30 GHz), or tuning
- 1. Longitudinal alignment precision: <5 μm alignment error of the irises induces transversal kick on the beam; this effect is independent of frequency (11 or 30 GHz) if we keep similar iris aperture

- 2. RF to-beam phase: better than 0.10 (some microns on cavity shape) to preserve efficiency and beam stability
- 3. Avoid steps and kinks on the surfaces (field enhancement β)
- 4. Ra should be around ¼ of the skin depth to preserve electrical conductivity

Copper quadrant structures: example 30GHz

- -machining by 3D milling (carbide tools)
- -alignment of the quadrants by balls and gooves (plastic deformation of copper): possible improvement?
- -assembly by brazing or by bolting
- -achieved accuracy? Grooves are positioned at some 6 μm accuracy
- -damping implemented in the design

Tolerances:

5 μm shape tolerance

Metrology on copper quadrants

Measurement: coordinate measuring machine, contact with 0.1N force, accuracy \pm /-3 µm (at CERN), scan pt. by pt. on the surfacein parallel with RF low power control

Achieved shape accuracy

Surface finishing on copper, Ra=0.1-0.4 mm

Possible sources of the error in 3D milling

- -Error on tool diameter, tool length, tool run-out : dynamic dimensions
- -Error on tool shape
- -Tool flexure (larger tools at 11GHz should be favourable)
- -Tool consumption during machining
- -Thermal expansion of the piece...probably not relevant for the present short prototypes
- -Temperature stability, dynamics of the machine tool
- -Positioning accuracy of the machine tool (machine tool with higher nominal accuracy give better surface finish)

quadrant structures Surface quality: on copper HDS60 milling milling Name = HDS60Cu-Tool03 e :4 May 2007 Arnau TS/MME Mag = 150 X EHT = 20.00 kV Detector = SE1 Mag = 500 X EHT = 20.00 kV Detector = SE1 File Name = HDS60Cu-Tool04 Date :4 May 2007 G. Arnau TS/MME HDS60 Cu 100µm milling, best result Diamond turni M.Taborelli, TS-MME 18/6/20 Mag = EHT = 2 Detector

Other materials and bi-metal

Full structure in single material for rf testing

Joining Mo to CuZr C15000 alloy by diffusion bonding through HIP or explosion bonding; tested by machining, shear and pull strength test

Explosion bonding

M. Taborelli, TS-MME

Other machining techniques:

- -3D milling of copper with single crystal diamond tool?
- -Elliptical vibration milling of copper?
- -Electrochemical machining sufficiently accurate?
- -Electro discharge machining of refractory metals (micro-cracks on molybdenum), development in progress

Ecole d'ingenieurs Geneva

Metrology problems

Requires high accuracy, ideally 0.1 μ m to control at 1 μ m level Force of the sensor should be low (0.1 N leaves marks) Available optical methods are not adapted for complex 3D shapes

The goal is the fabrication of 1 geometry in 4 months and 10 geometries per year

Present production situation

CLIC accelerating structures		
Frequency	Structure	Status
CTF3 30 GHz tests	Cu x/2 circular - 30CNSD1p3Cu	UNDER TESTING
	W 2π/3 clamped	at CERN
	Pulse heating cavity	at CERN
	Mo HDS11-small - 30HDS11S_Mo	at CERN
	Cu HDS11-small - 30HDS11S_Cu	ODERERD
	Ti HDS11-small - 30HDS115_Ti	at CERN
	Cu HDS thick: #1 - 30HDSTkCu	at CERN
	Cu HDS thick: #2 - 30HDSTkCu	at CERN
	Mo HDS thick - 30HDSTkMo	MECH.DESIG N
	Cu quadrant circular thick #1 - 30CNSO TkCu	ODEREKD
	Cu quadrant circular thick #2 - 30CNSQ_TkCu	ODERERD
	Mo quadrant circular thick - 30CNSQ_TkMo	MECH. DESIGN
	Cu quadrant circular thin 30CNSQ_ThCu	ODERERD
	Cu HDS R1.2 - 30HDS12XSCu	MECH.DESIG N
	Cu 2π/3 quadrant - 30CNS-Q2p3Cu	UNDER MECH. DESIGN
	long taper coupler and speed bump coupler	UNDER RF DESIGN
	Bi-metal structure	under consideration
	Total number of structures for 30 GHz tests: 17	
X-band ® SLAC 11.4 GHz tests	Mo HDX-11 - 11HDS11Mo	at SLAC
	Cu CLIC_vg1 quadrant undamped (P3) - 11WUSQvg1Cu	RF design dome
	CLIC_vg1 quadrant damped (P1) - 11WNSQvg1Cu	UNDER MECH. DESIGN
	CLIC_vg1 disk undamped - 11WNSDvg1.Cu	UNDER RF DESIGN
	CLIC_vg1 disk damped - 11WDSDvg1Cu	UNDER RF DESIGN
	T23VG3 disk undamped (P2) - 11T23vg3DCu	collaboration CERN/SLAC
	HDX 70° quadrant damped - 11HDSQ70_Cu	UNDER RF DESIGN
	HDX 70° disk undamped - 11HNSD70_Cu	UNDER RF DESIGN
	CLIC_full structure	waiting for complete quadrant manufacturing
	Total number of structures for x-band tests: 9	

Available
Under production
Under mech. Design.
Under RF design

HDS11-small-Mo

