

QFib Test Beam

B. Duran, S. Hatipoglu, B. Kaynak, S. Ozkorucuklu, A. Penzo, O. Potok, 12.04.2024

QFib Test Beam Setup

Beam defining counters Beam defined as 5mm diameter or 10x10mm² according to combination of coincidence of beam counters

DUT: Detector Under Test

- 1.5m long HF-PPP fibers + MCP-PMT/PMT
- 2.5m long HF fiber bundle + MCP-PMT
- 12cm Polymicro fiber bundle + MCP-PMT
- 8cm Polymicro High NA fiber bundle + MCP-PMT
- 12cm Polymicro fiber array(7x7) + MCP-PMT

TRS: Time Reference System

SB1-2: MCP-PMT + Qbar doublets (two 5x5x100mm³), 45° to the beam

TRC: MCP-PMT + Qblock (12x12x25mm³)/UVT Plexi (12x12x20mm³), Head on

SPS Beam Profiles @ H8B - 180 GeV Pions

SPS Beam Profiles @ H8B - 180 GeV Pions

Data Taking Conditions

- 100, 120, 140, and 180 GeV pion beams were available.
- Mainly 180 GeV pion beam was used.
- In total, 57 Runs and 29 Scans were taken.
- More than 61.5 Million events were taken.
- TRS calibrated with the scans.
- Attenuation and time resolution in the different fibres were investigated

Beam Position, mm

Apparatus: Quartz Bars and Block + MCP (KATOD)

- 2 (identical) Slant (45°) Bars (SBL-R)
- 1 Head-on Block (0°) Time Reference Counter (TRC)

Measuring simultaneously ToF between each pair of the 3 counters, in hypothesis of independent measurements (no covariance):

 $\sigma_{12}^2 = (\sigma_1^2 + \sigma_2^2) \quad ; \quad \sigma_{13}^2 = (\sigma_1^2 + \sigma_3^2) \quad ; \quad \sigma_{23}^2 = (\sigma_2^2 + \sigma_3^2)$ time resolution for each counter can be obtained.

After calibration the TRC (was/can be) used with DUTs

List of available fibers and dimensions

Module	Туре	Core	(µm)	Clad	(µm)	Buffer	(µm)	OH–(ppm)
PPP-HF	FSHA	Silica	(300)	Polymer	(320)	Acrylate	(345)	~700
(())	FIA	Silica	(200)	F-Silica	(240)	Acrylate	(500)	<1
(())	IN	Silica	(300)	F-Silica	(316)	Polyimide	(345)	~1200
HF	FSHA	Silica	(600)	Polymer(?)	(630)	Acrylate	(800)	~500
200m roll	JTFLH	Silica	(600)	Polymer(?)	(630)	Acrylate	(950)	~???
High NA	FSU	Silica	(330)	AF(Teflon)	(350)	???	(400)	~???

For PPP-HF module:

FSHA- and FIA-type manufactured by Polymicro Inc. (USA)

IN-type fibers manufactured by INFOS (Russia)

For HF modules:

FSHA-type manufactured by Polymicro Inc. (USA)

We are also testing plastic clear fibers' bundles (from Kuraray)

Assemblies of fused silica bars and rods (from HERAEUS) will be tested soon

Polymicro (MOLEX) Fibers tested

HF: FSHA600630800 (OH- 500ppm)

PPP-HF: FSHA300320345 (OH- 700ppm)

JTFLH600630950 (OH- ??? ppm) (≈ 200m spool)

(≈3m)

Optical Inspection

Polymicro JTFLH600630950

- Thanks to R. Stefanovitch, fibers were cut by 12 cm
- Thanks to Buse Duran, all fibers were *polished by hand*
- brought together in different configurations
- Array or Bundle

7x7 12cm Polymicro Fiber (SSHF-Array) JTFLH600630950

Conditions for 12th Scan;

- 7x7 12cm Poly-Micro Fiber with Si-pad - SSHF- Array

- Fiber stands 5.5 cm and 7 in a row.

Angle Scan

12cm Polymicro Fiber (SSHF- Bundle) JTFLH600630950

SSHF- Bundle

• Fibers are more compact and more fibers were broth together, so the amplitude is higher than the fiber array

Angle ScanFor both cases (fiber array or bundle), 90degreebersconfiguration could not be read out because of the criticalangle. Created Cherenkov photons go out from the fiber.

Angle Scan

High NA- Bundle

- 74 x 8 cm HNA fiber bundle
- Using same HV and MCP, amplitudes are better than other fibers. Even though effective thickness slightly small than the other types!!!

Even 90-degree configuration gives very good results!!!!

Short Segment HF like Fiber (SSHF) Bundle JTFLH600630950

High NA Fiber Bundle FSU330350400

VS

High NA- Bundle

• 74 x 8 cm HNA fiber bundle

Amplitude of the HNA fibres is quite stable along the full-length (8cm) And time resolution varies between 20 -30 ps

• Length Scan at 45 degree

PPP (HF PreProduction Prototype) Fibre bundle

With Hamamatsu R7525

1.5 m long PPP fibers attached to the different PMTs

With MCP-PMT

Time resolution of HF-PPP fiber 20 cm away from the photodetector

HF-PPP + R7525

The time resolution of HF-PPP fiber along 1.5 m with different PMTs

KATOD UFK-5G-2D MCP-PMT

Time resolution along the 2.5 m HF fiber bundle

