La cosmologie à Sorbonne Université

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^2} \left(\rho(t) + \frac{3p(t)}{c^2}\right) + \frac{\Lambda c^2}{3}$$

COM_CompMap_CIB-GNILC-F857_2048_R2.00 I

After Dole & Béthermin

Wide-Fast-Deep Survey Region

Photo

-0.4 -

North Ecliptic Spur

South Celestial Pole

-2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 **Right Ascension (radians)**

https://www.youtube.com/watch?v=N-lGQVpevAc

(e) WFI2033-4723

(f) PG 1115+080

(a) B1608+656

Cosmologie quelques grandes questions

- Quelle est l'histoire de formation et d'évolution de l'Univers?
- Quelle est la nature de l'Inflation et est-ce le meilleur modèle pour expliquer les perturbations primordiales?
- Quelle est la nature de l'énergie noire et est-ce le meilleur modèle pour expliquer l'acceleration apparente tardive ?
- Quel est son contenu ?
- Quelle est la nature de la matière noire ?
- Combien y a t'il de familles de neutrinos, quelle sont leurs masses et leur propriétés, y a t'il d'autre reliques?
- Comment s'organise la matière dans l'Univers ?
- Quelle est l'influence des processus baryoniques sur la distribution de matière aux grandes échelles
- Comment la matière se structure t'elle dans les objets, galaxies et amas et quelle est l'histoire de formation des galaxies ?

•	Notre mod
	P CMB Planck TT,TE,EE+lowE P CMB Planck TT,TE,EE+lowE P CMB ACT+WMAP
•	WL KiDS-1000
•	• WL KiDS+VIKING+DES-Y1
•	WL KiDS+VIKING+DES-Y1
	WL KiDS+VIKING-450
	WL KIDS+VIKING-450
	WL KIDS-450
	WL NDS-450
	WL DES-13
•	WL HSC-TPCF
•	WL HSC – nseudo– C_1
•	WL CFHTLenS
•	WL+GC HSC+BOSS
•	• WL+GC+CMBL KiDS+DES+
•	WL+GC KiDS-1000 3×2pt
•	WL+GC KiDS-450 3×2pt
	$^{\circ}$ WL+GC DES $-$ Y3 3×2pt
	WL+GC DES-11 5×2pt
•	WL+GC KiDS+GAMA 3x2pt
•	GC BOSS DR12 bispectrum
•	GC BOSS+eBOSS
•	GC BOSS power spectra
•	GC BOSS DR12
	GC BOSS galaxy power spectr
	GC+CMRL unWISF+Planck
	CODES V1
	CC SDSS DD9
	сс умм ₋ ууі
•	CC ROSAT (WtG)
•	• CC SPT tSZ
•	CC Planck tSZ
•	CC Planck tSZ
•	RSD
•	RSD
	<u> </u>
~	

0.2

èle est-il complet ?

CMB with P

Balkenhol et al. (2021). Planck 2018+SPT+ACT : 67.49 + (

Structuration de la communauté

- CNRS
 - INSU
 - Programme Nationaux : PNCG, PNGRAM, PNHE
 - IN2P3
 - Astroparticule et cosmologie, ondes gravitationnelles, neutrinos
 - INP
 - GDR CoPHY
- CNU 34 & 29
- à Sorbonne Université
 - IAP, LPNHE, LPTHE, LERMA, LESIA, LPENS, SYRTE, LKB
 - IAP, LPNHE, LPTHE, L3@Obs, L2@Obs, LPENS, L1@Obs, LKB
 - Enseignement
 - 1 module L3 + 1PAD ~40 étudiants
 - 2 modules M1 (dont un anglais) + 1 PAD ~30 étudiants
 - M2 AAIS, M2 NPAC
 - ED A&A (1/3 soutenances cosmo, i.e. 3/an), ED PIF (+ ED Step'Up)

Ressources

- classiques : ERC, ANR, CNRS, PN...
- CNES, pour les projets spatiaux
- DIM-ACAV, DIM-Origines
- ILP, IPI

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$H^{2}(t) = \frac{8\pi G}{3c^{2}}\rho(t) - \frac{kc^{2}}{a^{2}(t)} + \frac{\Lambda c^{2}}{3}$$
$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^{2}}\left(\rho(t) + \frac{3p(t)}{c^{2}}\right) + \frac{\Lambda c^{2}}{3}$$

$$\frac{\ddot{a}(t)}{a(t)} = -\frac{4\pi G}{3c^2} \left(\rho(t) + \frac{3p(t)}{c^2}\right) + \frac{\Lambda c^2}{3}$$

Implication dans les SKA data chalenges

SDC 2: détecter/caractériser sources HI

Equipe MINERVA (PI D. Cornu) 1iere place

etwork layers samed parameters Input cube 127 - 1x1x8 87 - 3x3x1 87 - 1x1x5 87 - 2x2x6 107 - 3x3x3	Image / Activation Spatar reduction 64464/256 64464/28 64464/28 64464/28 22/22/84 32/22/84	YOLO-CIA (Cornu et al	NNA . 2024	l)				
12F - 1X1X3 16F - 1X1x5 24F - 3x3x3 16F - 1X1x3 24F - 3x3x3	32432664 32432522 32432522 32432522 32432522 32432522							
16F - 1x1x3 48F - 2x2x3 96F - 3x3x3	32x32x32 16x16x32 16x16x32	Team name	Score	N _d	Nm	R	С	A
96F - 3x3x3 48F - 1x1x3	16x16x32 26x16x32	MINERVA	23 254	32 652	30 841	0.945	0.132	0.81
128F - 2x2x4 256F - 3x3x3	8x8x26 8x8x26	FORSKA-Sweden	22 489	33 294	31 507	0.946	0.135	0.77
128F - 1x1x3 256F - 3x3x3	8x8x26 8x8x26 8x8x26	Team SOFIA	16822	24 923	23 486	0.942	0.101	0.78
768F - 1x1x1	Bx8x26	NAOC-Tianlai	14416	29 151	26 0 20	0.893	0.112	0.67
D YOLO Output 16 grid x 14 param)	EACH DOX : X: Y Z, W. (O. Frok, Ob) Flox, HY size, W2E, Castyal, Hingal, Casty J possible box per gold elem => up to 1024 boxes per sub-cube	HI-FRIENDS	13 903	21 903	20 828	0.951	0.089	0.72

du <mark>2</mark>1-cm EoR

Photon Spectrum fter Dole & Béthermin

cf. Ressell & Turner 1989 Lagache 1995 Henry 2002

γ−ray

(most of them are the 2.73K CMB blackbody)

10²⁰ 10²²

North Ecliptic Spur

Wide-Fast-Deep Survey Region

Photo

South Celestial Pole

-2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 **Right Ascension (radians)**

Photon Spectrum

fter Dole & Béthermin

cf. Ressell & Turner 1989 Lagache 1995

Right Ascension (radians)

2.4

Photon Spectrum fter Dole & Béthermin

cf. Ressell & Turner 1989 Lagache 1995 Henry 2002

γ−ray

(most of them are the 2.73K CMB blackbody)

10²² 10²⁰

North Ecliptic Spur

Wide-Fast-Deep Survey Region

Photo

South Celestial Pole

-2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 **Right Ascension (radians)**

Contribution au Plan focal de LSST

- , micro-code du plan focal

CCD dans le cadre du

Right Ascension (radians)

Combien de divisions ?

- Evaluation parcellaire...
- IAP : Theorie : CNRS 6/4, Cosmologie : CNRS 5/3, SU 1/0, CNAP 3/3, Hautes Energies & Galaxies : CNRS 4/2, SU 0/3, CNAP 1/2 -> 37
- LPNHE : CNRS 3/3, SU 3/3 -> 12
- LPTHE : CNRS 3 SU 1 -> 4
- LKB:2
- LPENS : 2
- Observatoire : Univers 12, Grandes Structures 17, Galaxies formation/evolution 21, Galaxies structure interne 21 -> 50 (dont 25 nouveaux arrivants)+21

Structuration interne et besoins

- Doctorants
- Déjà très structurés avec les ED
- mais : Bourses en particulier pour cotutelles entre labos SU
- Post Doc
- Bourses !!!!!
- Soutien aux projets communs au sein de SU
- simplification admin... Problème des budgets CNRS/SU/autres...
- IPI était aussi une source de support important pour les conférences
- Séminaires communs

déjà très structuré et organisé (ICAP, journal club IAP videodiffusé, séminaire GRECO, etc...)

• Domaine riche avec de VRAIS résultats (grml !)

- Seule une fraction des observables « simples » (i.e. linéaires) est exploitée
- De réels progrès sur les choses plus complexes
- Encore de beaux mystères à éclaircir
- années

Thème de recherche très visible à l'international et avec un grand interêt societal

- c'est sans doute vrai de la plupart des thématiques...)

 - aussi un acteur majeur des projets observationnels majeurs des 10 prochaines années

• Domaine très éclaté : 3 instituts, 2 CNU, multi labo...

- Outils de structuration critiques pour faire fructifier la position forte de SU
- Intérêt pour SU à valoriser, à reconnaitre et à faire connaitre cette pépite !
- *au même titre que de nombreuses autres* !

Investissement observationnel important : de nombreux nouveaux résultats majeurs dans les 10 prochaines

l'Ile de France est un réel poids lourd dans la discipline, avec une densité de chercheurs importante (mais

SU est collectivement l'acteur le plus important d'IdF et porte des thématiques fortes et très visibles