Muon Neutrino & Antineutrino Event Separation with Machine Learning at MicroBooNE

Charlie Batchelor

C.Batchelor@sms.ed.ac.uk IOP Joint HEPP, APP and NP Conference Wednesday 10th April 2024

05/04/2024

Outline

Part I: Introduction

- CP Violation with Neutrinos
- Experimental Setup: MicroBooNE LArTPC
- Muon vs. Antimuon Separation How?

Part II: Event Selection Chain

- MicroBooNE & The NuMI Beam Exposure
- General Selection Cuts
- BDT Selection Cuts

Part III: Selected Samples

- Charged Current v_{μ} Sample
- Charged Current $\bar{\nu}_{\mu}$ Sample

Part I: Introduction

Introduction: CP Violation & Upcoming Experiments

Sanford Underground Research Facility

- The upcoming neutrino experiment DUNE aims to definitively measure the degree to which Charge-Parity (CP) symmetry is violated in the lepton sector of the Standard Model, using a Liquid Argon Time Projection Chamber (LArTPC).
- It will do this using a neutrino beam, focused in either neutrino or anti-neutrino mode.

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$

05/04/2024

MicroBooNE Detector & Run 3 Flux

MicroBooNE is another large (~10 x 2.5 x 2.5 m^2) Liquid Argon Time Projection Chamber

The samples used in this analysis correspond to the Run 3 Flux (2017 - 2018)

MicroBooNE & The NuMI Beam

• The MicroBooNE detector is a ground-level Liquid Argon Time Projection Chamber (LArTPC) that observes neutrinos at an off-axis exposure to the Neutrino at the Main Injector (NuMI) beam.

Tricky Bit: CC v_{μ} and CC \bar{v}_{μ} Separation

• This is a challenging task, since the resulting μ^+ and μ^- leptons, in the absence of a magnetic field, behave in essentially the same way in liquid argon.

- However, we may have a few potential handles on this:
- 1. Number of proton tracks
- 2. Muon Absorption
- 3. Angular Dependence

05/04/2024

Handle 1: Additional Proton Track

In the Charged-Current Quasi-Elastic (CCQE) regime, we expect to see an additional proton track for v_{μ} , but none for the \bar{v}_{μ} .

Handle 2: Muon Absorption

For muons stopping in the detector, around 75% μ^- will be absorbed, whereas no μ^+ are absorbed.

Handle 3: Angular Dependence

From helicity considerations, the cross section for the neutrino interaction is **independent of lepton polar angle** θ whereas the anti-neutrino process is θ -dependent and favors forward-going leptons.

Neutrino

Antineutrino

Part II: Event Selection Chain

Overall Selection Chain

General Selection Cuts:

Reconstructed Neutrino & Optical Trigger Muon-like Track Energy Cut 200 MeV Machine Learning Cuts (BDT):

Cosmic Removal
General Neutrino
Background

 $CC v_{\mu} \& CC \bar{v}_{\mu}$ Separation

NuMI Beam at MicroBooNE: Run3b Exposure

General Selection Chain Outline

General Selection Cuts: Current Sample

Overall Selection Chain

General Selection Cuts:

Reconstructed Neutrino & Optical Trigger Muon-like Track Energy Cut 200 MeV Machine Learning Cuts (BDT):

Cosmic Removal
General Neutrino
Background

 $CC v_{\mu} \& CC \bar{v}_{\mu}$ Separation

EXT BDT: Cosmic Removal

05/04/2024

EXT BDT Cosmic Cut: Current Sample

BGD BDT: Neutrino Background Removal

CC v_{μ} & \bar{v}_{μ} BDT Scores

Observations

Remaining EXT and Neutral Current (NC) events with pions are majority of background. It is difficult to train a model to perfectly separate these backgrounds from our signal.

Cut at 0.25, according to our metric, keeping everything above that score.

BGD BDT Background Cut: Current Sample

We have a sample cleansed of general background impurities.

We have removed 30% of NC events and further 10% of EXT.

Outstanding Tasks

- 1. Cosmic (EXT) Removal
- 2. General Neutrino Background Removal
- 3. CC v_{μ} and \bar{v}_{μ} Separation

Efficiency	Purity
37.9% (↓ 1.1%)	80.3% († 3.7%)

Overall Selection Chain

General Selection Cuts:

Reconstructed Neutrino & Optical Trigger Muon-like Track Energy Cut 200 MeV Machine Learning Cuts (BDT):

Cosmic Removal
General Neutrino
Background

 $CC v_{\mu} \& CC \bar{v}_{\mu}$ Separation

NU BDT: CC v_{μ} and \bar{v}_{μ} Separation

Observations

• Given that we should have enough statistics, we make the cut with the $\epsilon \times P$ metric once more, informing us to cut at 0.18 which obtains a relatively clean sample of CC $\bar{\nu}_{\mu}$.

Part III: Selected Samples

Resulting Sample: CC ν_{μ} Selection

• Application of all general selection cuts, and the three BDT model cuts results in the following sample of approximately **13500** selected CC ν_{μ} events

Efficiency	Purity
39.9%	70.4%

Resulting Sample: CC $\bar{\nu}_{\mu}$ Selection

- Application of all general selection cuts, and the three BDT model cuts results in the following sample of around **150 selected CC** $\bar{\nu}_{\mu}$ events
- Sample is 56.2% pure in CC $\bar{\nu}_{\mu}$, but only 1.4% efficient!

Efficiency	Purity
1.4%	56.2%

Summary

- A selection chain using the **XGBoost BDTs** has been developed to select samples of CC v_{μ} & CC \bar{v}_{μ} events from the run3b NuMI data at MicroBooNE.
- The main CC v_{μ} & CC \bar{v}_{μ} separator model achieves a statistical separation, and we were able to extract the required samples for further analysis.

Related IOP Talks

Marina Guzzo's Work: Electron Neutrino & Antineutrino Separation

Holly Parkinson's Talk: "Understanding the Off-Axis Flux of Neutrinos from Neutral Kaons"

Back Up Slides

Muon and Antimuon Separator: Variable Importance

Feature Importance (Weight)

Features

BDT Variables

