

Measurement of Higgs boson properties via the $H \rightarrow \tau \tau$ decay channel

jet

Run: 300571 Event: 64794822 2016-05-31 08:12:26 CEST

> $m_{\rm H} = 125.2 \,\mathrm{GeV}$ 1.4 TeV $m_{jj} =$

Supervisor: Dr. Kathrin Becker

Why use the $H \rightarrow \tau \tau$ decay channel?

Branching Ratios [1]

- The $H \rightarrow \tau \tau$ has the highest branching ratio to leptons, $\mathscr{B}r(H \to \tau \tau) \approx 6.3\%$ for a Higgs mass of 125.09GeV
- Fermionic decay modes provide direct measurements of the Yukawa coupling

At the same time:

- reconstruction.

 τ lepton is the only lepton heavy enough to allow hadronic decays (65%) However, in both leptonic and hadronic τ decays, neutrinos are present in the final state. Their presence poses an additional challenge to the tau

 $H \rightarrow \tau \tau$ has a relatively low background contribution. Dominant background process $Z \rightarrow \tau \tau$, followed by misidentified τ leptons (Fake)

Why looking at the VBF Production Mode?

I am currently engaged in improving and extending <u>JHEP 08 (2022) 175</u> to look at unfolded CP sensitive variables

 From Higgs combination has been seen t to the VBF production mode

One of the goals of the 2nd round analysis:

[3] $\sigma_H \times B(H \rightarrow \tau \tau)$ relative to the SM expectations in the 9 fiducial volumes defined in the STXS measurement.

- From Higgs combination has been seen that the H
ightarrow au au can have very good sensitivity

VBF Production Mode

Use the VBF production mode

dor dp¹¹/db/GeV]

- Studying the kinematics of the Higgs boson and the two tagging jets
- Studying the CP properties of the Higgs boson
- Probing for new physics with Effective Field Theory (EFT)

between the two jets, sorted by the jet rapidity

- In the VBF production mode , the $\Delta \phi^{signed}_{_{ii}}$ distribution, a CP odd observable and can be used as a probe for the Higgs CP properties
- $\Delta \phi_{ii}^{signed}$ sensitive to the Higgs Gauge coupling, both CP conserving and CPV new physics
- Good sensitivity to possible BSM effects for $\Delta \phi_{::}^{signed}$ at high- p_T^H

Differential Analysis Strategy: Selection Cuts

Followed the previous analysis closely:

•

- Select VBF Higgs using VBF selection cuts and MVA Tagger
- Since we target only on VBF events: Tightened VBF cuts to decrease the ggF contamination
- VBF splits in two regions:
 - VBF_1 is much richer in Signal,
 - VBF_0 has a larger ggF fraction

nd MVA Tagger ed VBF cuts to decrease

Old VBF cuts	New VBF cu			
$\eta^{j_0} imes r$	$\gamma^{j_1} < 0$			
$ \Delta\eta_{jj} >3$	$ \Delta \eta_{jj} > 3.$			
C = 1				
$m_{jj} > 350 GeV$	$m_{jj} > 600G$			
$p_T^{j_1} > 30 GeV$				
	$p_T^{jj} > 30Ge$			
—	$p_T^{tot} < 50Ge$			

gnal, action

VBF Cuts	Region	ggF fraction (%)
	VBF	26.5
Old	VBF 0	35.6
	VBF 1	6.1
	VBF	17.0
New	VBF 0	26.1
	VBF 1	6.1

ggF contamination in $\tau_{lep}\tau_{had}$ channel

 The new cuts are chosen to keep vbf_1 region the same and vbf_0 is reduced

Differential Analysis Strategy: Mass Reconstruction

- $Z \rightarrow \tau \tau$ background contribution
- To reconstruct the invariant mass of the ditau system $m_{\tau\tau}$, 2 tools were used •
 - The missing Mass Calculator (MMC)

Fit the $m_{\tau\tau}$ in each bin of the unfolded distributions to distinguish Signal from the dominant

The Collinear Mass Approximation (CLMA) -only for a tiny fraction of events where MMC fails

expect to recover 0.7% of Signal events

MMC

- Advanced likelihood-based technique
- Relies on the variance of energy and position of neutrinos due to the limited resolution, and aims at estimating their energy and direction

CLMA

- Two assumption are considered:
 - The invisible decay products of the t-lepton decays fly in the same direction as the visible decay products
 - The missing transverse energy can only correspond to neutrinos

Unfolding & Differential Cross-section Measurement

• The differential cross-section measurement is obtained by:

Our goal is to increase ε_i , while keeping f_i at high values

- phase space of the measurement)
- from the reconstructed.
- A Profiled Likelihood Unfolding is employed in this analysis

Yield Table of $au_{lep} au_{had}$

Fiducial cross section = cross section in fiducial volume (Cuts applied to particle-level events to reproduce the

The Unfolding method is used to invert the migration matrix and extract the particle-level spectrum of a variable

The Unfolding problem boils down to a matrix inversion problem

Unfolding: Binning of the unfolding variables

- easy to invert.
- Due to limited statistics, decided to make 4 bins for each one of the unfolding variables •
 - For $\Delta \phi_{ii}^{signed}$, same binning as in the $H \rightarrow \gamma \gamma$ was used •
 - For $p_T^{j_0}$ and p_T^H , a yield significance approach was employed •

• Large off-diagonal elements lead to instabilities/large uncertanties — Choose binning in a way that the migration matrix is diagonal, and consequently

$p_T^{j_0}$	p_T^H	$\Delta \phi_{jj}^{signed}$	$\Delta \phi^{signed}_{jj}$ vs p^H_T
[40,95]	[0,110]	$[-\pi, -\pi/2]$	$ p_T^H < 200 \& \Delta \phi_{jj} <$
[95,130]	[110,150]	$[-\pi/2,0]$	$p_T^H < 200 \& \Delta \phi_{jj} >$
[130,180]	[150,200]	$[0, \pi/2]$	$p_T^H > 200 \& \Delta \phi_{jj} <$
[180,500]	[200,550]	$[\pi/2,\pi]$	$p_T^H > 200 \& \Delta \phi_{jj} >$

Fit Setup and Results

- Fit the $m_{\tau\tau}^{mmc}$ in each one of the unfolded bins •
- MMC range [0,200]GeV •
- For the mmc binning an algorithm is employed that requires every bin to have $\alpha^{MC \ stat} < 20 \ \%$ •
- In the fit, 2 SR regions VBF_0 and VBF_1, and a Top control region are considered. •

	syst + stat.	MC+data stat.	data stat.
$\Delta \mu_1$	\pm 0.65	\pm 0.58	\pm 0.47
$\Delta \mu_2$	\pm 0.66	± 0.65	± 0.47
$\Delta \mu_3$	± 0.62	\pm 0.60	\pm 0.43
$\Delta \mu_4$	\pm 0.45	± 0.44	\pm 0.32

• Results are dominated by Data stat. followed by MC stat. (Background Templates) which includes statistical uncertainty of Fake estimate and $Z \rightarrow \tau \tau$

For Fake templates, more inclusive templates were used \bullet

- Need to improve background templates; this will enable us to bin more finely, but also reduce the MC stat uncertainty in the fit.
- Observed similar behaviour in all unfolding variables

ZttQCD: Go with the flow

- The limited statistics of the Fake template and the ZttQCD template have the largest effect next to data stats on the results
- Generating more MC stats for $Z \rightarrow \tau \tau$ (QCD) is highly inefficient due to pile-up jets in the selection

assumption that distributions are smooth.

Expert in Warwick group (Chris Pollard)

•

- Normalizing Flows (NFs) learn an invertible mapping f: $X \rightarrow f(x)$, where X: Data and f is a chosen latent-distribution
- Once we learn the mapping f, we generate data and apply the inverse transformation $f^{-1}(x)$

The invertible functions are constructed in a way so that we can easily sample from f(x) and calculate its density function p(f(x))

Normalising Flows Implementation

- Normalising Flows (NFs) is morphing strategy that transforms simulated event by employing a deep learning based Machine Learning (ML) method to estimate the probability density function to to better match the data.
- Several different neural network architectures were studied, the NN takes 11 variables as inputs:

The current hyper parameter tuning shows good agreement between original and generated events

Issue with Periodic quantities such as ϕ or $\Delta \phi$. That's because really π and $-\pi$ are equivalent in $\Delta \phi$ space.

First Attempt with Normalising Flows

- At this point NFs are only applied to the nominal histograms
- An additional uncertainty related to the NFs needs to be considered (work in progress) ullet

So far, Morphing has been applied in the $\tau_{lep} \tau_{had}$ channel

- When Morphing is applied, able to bin more finely
- Additionally, Bin µ uncertainties were decreased for all variables

	syst + stat	MC + data stat.	Data sta
$\Delta \mu_1$	± 0.60	± 0.54	± 0.46
$\Delta \mu_2$	±0.38	± 0.35	± 0.27
$\Delta \mu_3$	±0.38	± 0.35	± 0.28
$\Delta \mu_4$	±0.59	± 0.54	± 0.44

(See <u>back-up</u> for other variables in $au_{lep} au_{had}$ channel)

Status of the analysis

- The first differential measurement cross-section $H \to \tau \tau$ measurement in the VBF phase space and 4 distributions were unfolded $\Delta \phi_{ij} p_T^{j_0}, p_T^H, \Delta \phi_{ij} vs p_T^H$.
- A brief overview of the analysis was presented here
- Due to time constraints, Normalising flows were not applied to the other channels. Thus, morphed histograms are not used for the combined fit.
- In this presentation, only the Asimov unfolding results for the $\tau_{lep} \tau_{had}$ channel were presented.

Status of the analysis

The analysis is complete and in the approval process to be unblinded

Unblinding Results coming soon!

Thank you!

References

- [1] LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, CERN-2017-002, CERN, 2017.
- [2,3] ATLAS Collaboration, Measurements of Higgs boson production cross-sections in the H $\rightarrow \tau^+ \tau^-$ decay channel in pp collisions at $\sqrt{13}$ TeV with the ATLAS detector, JHEP 08 (2022) 175, arXiv: 2201.08269 [hep-ex].
- [4] <u>https://gebob19.github.io/normalizing-flows/</u>
- with the ATLAS detector, Phys. Rev. D 99 (2019) 072001.

• [5] Title page background: ATLAS Collaboration, Cross-section measurements of the Higgs boson decaying into a pair of τ -leptons in proton-proton collisions at \sqrt{s} = 13 TeV

Backup

Migration Matrices in vbf region

First Attempt with Normalising Flows

	syst + stat	MC + data stat.	Data stat.
$\Delta \mu_1$	±0.57	± 0.54	± 0.42
$\Delta \mu_2$	±0.63	± 0.58	± 0.46
$\Delta \mu_3$	±0.57	± 0.55	± 0.41
$\Delta \mu_4$	±0.59	± 0.40	±0.31

	syst + stat	MC + data stat.	Data stat.
$\Delta \mu_1$	± 0.80	± 0.62	± 0.62
$\Delta \mu_2$	±0.58	± 0.52	±0.43
$\Delta \mu_3$	±0.43	± 0.42	± 0.32
$\Delta \mu_4$	±0.33	± 0.32	± 0.24

 $p_T^{j_0}$

	syst + stat	MC + data stat.	Data stat.
$\Delta \mu_1$	± 0.44	± 0.37	±0.32
$\Delta \mu_2$	± 0.44	± 0.38	±0.33
$\Delta \mu_3$	±0.52	±0.49	± 0.40
$\Delta \mu_4$	± 0.50	± 0.48	±0.38

 p_T^H

 $\Delta \phi_{jj}^{signed}$ vs p_T^H

MMC vs CLMA

