First Operation of an ACHINOS-equipped Spherical Proportional **Counter with Individual Anode Read-out**

D.Herd¹, I.Katsioulas^{1,2}, P.Knights¹, I.Manthos¹, J.Matthews¹, L.Millins^{1,3}, T.Neep¹, K.Nikolopoulos^{1,4}, G.Rogers¹ ¹University of Birmingham, ²European Spallation Source, ³Rutherford Appleton Laboratory, ⁴University of Hamburg

The Spherical Proportional Counter

- The Spherical Proportional Counter [1, 2] is a gaseous detector with applications from dark matter [3, 4] to neutron spectroscopy [5].
- Comprises a $\mathcal{O}(m)$ grounded shell, with a $\mathcal{O}(mm)$ spherical anode at the centre at high voltage, providing charge amplification and signal read-out.
- For large volume, higher pressure operation, an ACHINOS structure was developed over the single anode [6], to decouple the drift and avalanche field, previously read-out in two channels - Near and Far.

Simulation study

- Main anode to anode variation in gain is die to the grounded rod, which can be corrected [8].
- Additional anode to anode variations studied in simulation.
- Sensor modelled using Gmsh/Elmer.
- Simulation framework utilises Geant4 and Garfield++ [9].

Experimental Set-up

- An individually read-out ACHINOS was operated with 11 anodes of 0.5 mm radius in a 15 cm radius sphere [7].
- Detector operated at 500 mbar of Ar:CH₄ (98%:2%), with each anode biased to 800 V.
- Each anode biased individually and read-out through a purpose built preamplifier board.
- A 210 Po source decays via a 5.3 MeV α -particle, the position of which could be manipulated for calibration.

l_w	2.5 mm	± 0.05 mm	
$ heta_a$	0 rad	± 0.5 rad	
ϕ_a	0 rad	± 0.5 rad	

Construction Imperfections

- For each deformation, the average gas gain was compared to the nominal.

Results

• After individual calibration, data shows an energy resolution of 2.7%, approximate local energy resolution of a single anode.

Summary

- Individual anode read-out has been developed for the ACHINOS sensor.
- Individually read-out ACHINOS shows significant improvements in energy resolution.
- Individual read-out is a key development for the spherical proportional counter, e.g. by allowing for 3D reconstruction of events and fiducialisation/ event localisation, important for applications such as dark matter searches and neutron spectroscopy.
- The sources of differences in gain between anodes has been studied extensively in simulation, and correction voltages studied to recover energy resolution.

References

[4]

[7

- With source was pointed between two anodes, ionisation charge is shared between anodes.
- A 2.5% improvement in energy resolution when the anodes are calibrated individually.

- I. Giomataris et al. "A Novel large-volume Spherical Detector with Proportional Amplification read-out". JINST 3 (2008)
- I. Katsioulas et al. "A sparkless resistive glass correction electrode for the spherical proportional counter". JINST 13.11 (Nov. 2018)
- [3] Q. Arnaud et al. "First results from the NEWS-G direct dark matter search experiment at the LSM". Astropart. Phys. 97 (2018).
- Q. Arnaud et al. "Solar Kaluza-Klein axion search with NEWS-G". Phys. Rev. D 105.1 (2022).
- I. Giomataris et al. "Neutron spectroscopy with a high-pressure nitrogen-filled spherical proportional counter". Nucl. Instrum. Meth. A 1049 (2023).
- A. Giganon et al. "A multiball read-out for the spherical proportional counter". JINST 12.12 (2017).
- D. Herd et al. "First operation of an ACHINOS-equipped spherical proportional counter with individual anode read-out". JINST 19.01 (2024).
- [8] I. Giomataris et al. "A resistive ACHINOS multi-anode structure with DLC coating for spherical proportional counters". JINST 15.11 (2020).
- I. Katsioulas et al. "Development of a simulation framework for spherical proportional counters". JINST 15.06 (2020)

Rutherford Appleton Laboratory