UNIVERSITYOF LIVERPOOL

Decays of K isomers in the deformed neutron-deficient $\mathrm{A}=130$ region

 Andy Briscoe
A. D. Briscoe | Joint APP, HEPP and NP Conference, April 2024

Outline

- Introduction
- Experimental techniques and apparatus
- Results: Highly deformed A =130 Region
- Summary

Outline

- Introduction
- Experimental techniques and apparatus
- Results: Highly deformed A =130 Region
- Summary

Introduction: Structure deformed A ≈ 130

$56<Z<61$ Region of interest

At non-zero deformation $2 \mathrm{j}+1$ degeneracy lifted orbitals split into projection onto symmetry axis, K-quantum number (+1- omega).

At large deformation the high- K component of the $\pi g_{9 / 2}$ orbital traverses the $Z=50$ shell gap.

Presence of both high-K and low-K band heads at fermi surface can give to isomeric nature of band heads

Introduction: K-isomers

One or many nucleons align with the symmetry (z) axis. K is an approximate quantum number.

It is difficult for rotational bands to decay from high-K to low-K due to the necessary reorientation of the angular momentum vector.

$$
\left\lvert\, \begin{array}{ll}
\left|\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{i}}\right|=|\Delta \mathrm{K}| \leq \lambda & \mathrm{K} \text { can only change by units up } \\
\text { to multipolarity of the transition }
\end{array}\right.
$$

$$
|\Delta \mathrm{K}|-\lambda=v \quad \text { larger changes in } \mathrm{K} \text { result }
$$ in hindered transitions

$F_{w}=t_{1 / 2}{ }^{\exp } / t_{1 / 2}$ weis Hindrance factor increases (approximately) linearly with ΔK

Outline

- Introduction
- Experimental techniques and apparatus
- Results: Highly deformed A =130 Region
- Summary

Experimental techniques and apparatus: Nuclear Spectroscopy at JYFL

Fusion-evaporation residues transported to focal plane for spectroscopy

Experimental techniques and apparatus: Focal-plane detectors

Multi-wire proportional counter (MWPC)

Micron BB20 DSSD
72×192 strips, 13,824 $0.45 \mathrm{~mm}^{2}$ pixels 300 um thick Si

Grid of $20 \mu \mathrm{~m}$ diameter goldcoated tungsten wires, provides (x, y) position of recoils

Ge detectors
3 BEGe \& 1 Clover detectors outside chamber surrounding DSSD in close geometry.

Experimental techniques and apparatus: Focal-plane detectors

Multi-wire proportional counter (MWPC)

Grid of $20 \mu \mathrm{~m}$ diameter goldcoated tungsten wires, provides (x, y) position of recoils

Micron BB20 DSSD
72×192 strips, 13,824 $0.45 \mathrm{~mm}^{2}$ pixels 300 um thick Si

Ge detectors
3 BEGe \& 1 Clover detectors outside chamber surrounding DSSD in close geometry.

All signals time stamped by a 100 MHz clock, read out individually and digitized for complex correlation analysis with signals at target.

Experimental techniques and apparatus: In beam detectors surrounding target

JYTube charged- particle detector:120 2 mm -thick plastic scintillators read out by SiPMs Hexagonal cylinder geometry

JUROGAM3 Array: 24 Clover and 16 Phase 1 Ge detectors, 4 angles

The JUROGAM 3 spectrometer
J. Pakarinen ${ }^{1, .2} \oplus$, J. Ojala ${ }^{1} \oplus$, P. Ruotsalainen ${ }^{1} \oplus$, H. Tann ${ }^{1.2}$, H. Badran ${ }^{1.4}$, T. Calverley ${ }^{1.2}$, J. Hilton ${ }^{1.2}$, T. Grahn

Experimental techniques and apparatus: Evaporation residue discrimination

Recoils are discriminated by:

- ToF between MWPC and DSSD
- Characterstic implantation energy in Si

Simplified isomer
correlation logic:
if implantation signal at DSSD

Can correlate these If isomeric state lives long enough to survive flight

Outline

- Introduction
- Experimental techniques and apparatus
- Results: K-isomers in the deformed $\mathbf{A}=130$ Region
- Summary

Results: Experimental Details

Primary goals of experiments concerned with proton decay studies with at high energies (p4n-6n channels)
${ }^{78} \mathrm{Kr}+{ }^{58} \mathrm{Ni} \rightarrow{ }^{136} \mathrm{Gd}^{\star}$
${ }^{78} \mathrm{Kr}+{ }^{54} \mathrm{Fe} \rightarrow{ }^{132} \mathrm{Sm}^{\star}$
Inverse reactions, high transmission with MARA

Used full FPGe array and Jurogam detectors "just in case" - free data from stronger production channels.

Identification based on in-beam γ rays (JYTube, \& mass).

Results: ${ }^{125} \mathbf{L a}$

PHYSICAL REVIEW C, VOLUME 60, 014308
Rotational structures in ${ }^{125} \mathrm{La}$ and alignments in $A \approx 130$ nuclei
D. J. Hartley, L. L. Riedinger, H. Q. Jin, W. Reviol, and B. H. Smith
Department of Physics and Astronomy, University of Tennessee, Knoxille, Tennessee 37

Fantastic prompt γ-ray spectroscopy by Hartley et al, at Lawrence Berkeley with Gammasphere.

Many bands built upon different orbitals. High-k band attributed to high-k $\mathrm{g}_{9 / 2}$ floating
[404]9/2

[550]1/2

Results: ${ }^{125} \mathbf{L a}$

PhYSICAL REVIEW C, volume 60,014308
Rotational structures in ${ }^{125} \mathrm{La}$ and alignments in $A \approx 130$ nuclei
D. J. Hartley, L. L. Riedinger, H. Q. Jin, W. Reviol, and B. H. Smith
Department of Physics and Astronomy, University of Tennesse, Knoxville, Tennessee

Fantastic prompt γ-ray spectroscopy by Hartley et al, at Lawrence Berkeley with Gammasphere.

Many bands built upon different orbitals. High-k band attributed to high-k $\mathrm{g}_{9 / 2}$ floating

299 keV transition from $9 / 2^{+}$to $11 / 2^{-}$
K-hindered E1

$$
|\Delta K|=9 / 2-1 / 2=4
$$

$$
\log (F w)=8.94
$$

[404]9/2
[550]1/2

Results: ${ }^{122} \mathbf{L a}$

311 keV transition from 8- to 7+

K-hindered E1
$|\Delta K|=16 / 2-8 / 2=4$
$\log (F w)=7.73$

Band in ${ }^{122}$ La in is new, analogous band in ${ }^{124}$ La shown for reference

Results: ${ }^{126} \mathbf{L a}$

1

2

36 keV transition from 5^{+}to 4^{-}
K-hindered E1

$$
|\Delta K|=7 / 2-3 / 2=2
$$

$$
\log (F w)=5.78
$$

Short note
Configuration assignments and decay of ${ }^{126} \mathrm{La}$ high-spin bands

Results: ${ }^{127} \mathbf{P r}$

355 keV transition from $9 / 2^{+}$to 11/2-

K-hindered E1

$$
|\Delta K|=9 / 2-3 / 2=3
$$

$$
\log (F w)=8.06
$$

Similar story. High-k band attributed to high-k $\mathrm{g}_{9 / 2}$ floating

Results: ${ }^{188} \mathbf{P r}$

Band 3
(330)

119 keV transition from 8- to 7+

K-hindered E1

$$
|\Delta \mathrm{K}|=16 / 2-8 / 2=4
$$

$$
\log (F w)=7.56
$$

130
 Pr

79 keV transition from 7 to 6+

K-hindered E1

$$
|\Delta K|=7 / 2-3 / 2=2
$$

$\log (F w)=5.95$

Results: Hindrance Values for SQP K Isomers

Isotope	E(gamma) [keV]	$\begin{aligned} & \text { T1/2 } \\ & \text { [ns] } \end{aligned}$	W.E. (E1)	Tot conv	LogFw	AK
122La	311	481	$9.05 \mathrm{E}-15$	0.011	7.73	4
125La	299	868	$1.01 \mathrm{E}-15$	0.012	8.94	5
126La	37	2015	$5.31 \mathrm{E}-12$	0.59	5.78	2
127Pr	335	808	7.09E-15	0.01	8.06	4
128Pr	199	1173	$3.36 \mathrm{E}-14$	0.038	7.56	3
130Pr	79	323	$5.32 \mathrm{E}-13$	0.48	5.95	2

Excitation energy vs A

Data spans broad mass region, ($A>100$)

[^0]Fritz Peter Heßberger ${ }^{1,2} \square$
${ }^{1}$ GSI - Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany ${ }^{2}$ Helmholtz Institut Mainz, Staudingerweg 18, 55128 Mainz, Germany

$$
\text { Version: September, 19, } 2023
$$

${ }^{94} \mathrm{Mo}\left({ }^{40} \mathrm{Ca}, 2 \mathrm{pn}\right){ }^{129} \mathrm{Nd}$ Gammasphere, Microball

Beautiful example of rotational structure built on high- and low-K orbitals

Positive and negative parity structures remain separate
[402]5/2+ band head adopted as beta-decaying ground state

Results: ${ }^{129} \mathrm{Nd}$ multi-quasiparticle isomer

$$
m_{2}
$$

$\gamma-\gamma$ coincidence analysis of transitions depopulating the isomer

High-K strongly coupled band above isomer
I

* FP Ge coincidences reassign β decaying ground state as 7/2 (band 1)

Results: ${ }^{129} \mathrm{Nd}$ interpreting the isomer(s)

Extracted hindrance factors:
Fw $=t_{1 / 2}{ }^{\text {exp }} / t_{1 / 2}$ Weis are consistent with systematics

$E_{\gamma}(\mathrm{keV})^{\mathrm{a}}$	$I_{i}^{\pi} \rightarrow I_{f}^{\pi}$	$T_{\gamma}{ }^{\mathrm{b}}$	$\log F_{W}$
Decay out from the $21 / 2^{+}$isomer			
175.3	$\left(21 / 2^{+}\right) \rightarrow\left(19 / 2^{+}\right)$	$15(2)$	$1.56(7)$
391.0	$\left(21 / 2^{+}\right) \rightarrow\left(17 / 2^{+}\right)$	$20(2)$	$3.29(8)$
536.7	$\left(21 / 2^{+}\right) \rightarrow 19 / 2^{+}$	$3(1)$	$7.70(2)$
796.0	$\left(21 / 2^{+}\right) \rightarrow 17 / 2^{+}$	$6(1)$	$5.62(18)$
847.8	$\left(21 / 2^{+}\right) \rightarrow 17 / 2^{+}$	$49(3)$	$4.47(5)$
1049.8	$\left(21 / 2^{+}\right) \rightarrow 19 / 2^{-}$	$7(1)$	$10.50(9)$

3.29, $391, \Delta K=2$

10.50, 1050, $\Delta K=7$
$7.70 .537, \Delta K=8$
5.62, $796, \Delta K=10$
$4.36,53,7, K=8$
$4.47,848, \Delta K=8$ 19/2 2^{+}and 17/2+) 21/2 2^{+}Bin $19 / 2^{+} \quad \nu 5 / 2^{+}[402] \dot{\otimes} \pi\left(9 / 2^{+}[404] 5 / 2^{+}[413]\right)$ $17 / 2^{+} \nu 7 / 2^{-}[523] \otimes \pi\left(5 / 2^{+}[413] 5 / 2^{-}[532]\right)$

Summary

Many single QP K-isomers observed in highly deformed $A=130$ region, in most cases extruding high K components of $\pi g_{9 / 2}$ orbital driving the properties of these decays.
Publication in progress for the near future.
This emphasises the superb quality of in-beam studies that previously assigned these bands, confirms high-K nature of these structures.

Extracted F_{w} values of $10^{6}-10^{9}$ for K-hindered E1 transitions agree well with systematics of Kisomers in other mass region(s).

Multi-particle $21 / 2 \cdot \mathrm{~K}$-isomer observed in ${ }^{129} \mathrm{Nd}$, first example of this kind built on high-K $g_{9 / 2}$ orbital

Moving further from stability larger deformations are expected in the region, new ground for future discovery.

thanks for listening

Thanks to my many valued collaborators!

A. D. Briscoe, J. Uusitalo, C. M. Sullivan, D. T. Joss, H. Tann, C. Petrache, Ö. Aktas, B. Alayed, M. A. M. Al-Aqeel, K. Auranen, A. Astier, H. Badran, V. Bogdanoff, B. Cederwall, C. Delafosse, A. Ertoprak, Z. Favier, U. Forsberg, W. Gins, T. Grahn, P. T. Greenlees, J. Heery, J. Hilton, A. Illana, S. Kalantan, R. Li, P. M. Jodidar, H, Joukainen, H, Jutila, R. Julin, S. Juutinen, J. Louko, M. Leino, M. C. Lewis, M. Luoma, B. F. Lv, A. McCarter, S. Nathaniel, J. Ojala, R. D. Page, J. Pakarinen, P. Papadakis, E. Parr, J. Partanen, E. S. Paul, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, J. Smallcombe, J. Sorri, S. Szwec, A. Tolosa, L. J. Waring, K. K. Zheng, E. Uuikyla, and G. Zimba_

Email: adbrisco@liv.ac.uk

Feel free to drop me an email

Back up slides next

${ }^{125}$ La, example ID

[404]9/2

Measure JYTube efficiency for single proton (≈ 65 \%).

Calculated binomial reference distribution for numbers to compare with experiment

Gives evaporated number of protons \rightarrow Z of species

Consistent with La (from Gd compound)

[550]1/2

Mixing ratio equations

$$
A_{k}^{\max }\left(J_{i} L_{1} L_{2} J_{f}\right)=\frac{1}{1+\delta^{2}}\left(f_{k}\left(J_{f} L_{1} L_{1} J_{i}\right)+2 \delta f_{k}\left(J_{f} L_{1} I_{2} J_{i}\right)+\delta^{2} f_{k}\left(J_{f} L_{2} I_{2} J_{i}\right)\right],
$$

TABLES OF COEFFICIENTS FOR ANGULAR DISTRIBUTION OF GAMMA RAYS FROM ALIGNED NUCLEI
heta_oneparam(theta, delta):
theta $=$ theta*np.pi / 180
c1 $=-0.2826$
$c 2=1.0032$
c3 $=-0.1050$
c4 $=0$
c5 $=0$
c6 $=0.5186$
$\mathrm{A} 2=(1 /(1+$ delta**2) $) *(\mathrm{c} 1+2 * \operatorname{delta} \mathrm{c} \mathrm{c} 2+($ delta**2 $) * \mathrm{c} 3)$
A4 $=(1 /(1+$ delta**2) $) *(c 4+2 * d e l t a * c 5+(d e l t a * * 2) * c 6$
return $0.17197802 *((1+((A 2) * 0.5 *(3 *((n p \cdot \cos ($ theta $)) * * 2)-1))+(A 4) * 0.125 *(35 *(n p \cdot \cos ($ theta $)) * * 4-30 * n p \cdot \cos ($ theta $) * * 2+3)))$

$$
\begin{equation*}
\frac{\delta^{2}}{1+\delta^{2}}=\frac{2 K^{2}(2 I-1)}{(I+1)(I-1+K)(I-1-K)} \frac{E_{1}^{5}}{E_{2}^{5}} \frac{T_{2}}{T_{1}}, \tag{1}
\end{equation*}
$$

[^0]: K Isomers in Transuranium Nuclei

