

1

Suppressed electric quadrupole collectivity in ³²Si

Jacob Heery Research Fellow University of Surrey

Joint APP, HEPP and NP Annual Conference, 2024 University of Liverpool 10/04/2024

09/04/24

Shape coexistence

Exotic nuclear shapes – e.g. octupole deformation

Phase transitions

a. conventional picture (prolate)

Deformation in superheavy nuclei

Different modes of excitation

b. present picture (triaxial)

The *sd*-shell

USDB

B. A. Brown and W. A. Richter, PRC 74 034315 (2006)

³²Si at a glance

Disagreement between previous B(E2) values

No previous measurement of spectroscopic quadrupole moment, Q_s

USDB shell model calculations do relatively good job in the region

Coulomb excitation

Beam nucleus is present in the electric field of target (and vice versa)

$$\frac{d\sigma}{d\Omega} = \left(\frac{zZe^2}{4\pi\epsilon_0}\right)^2 \left(\frac{1}{4T_a}\right)^2 \frac{1}{\sin^4\frac{\theta}{2}}$$

Both nuclei are inelastically excited through the Coulomb potential

We carefully choose the energy and scattering angle to suppress nuclear excitation

Cline criterion – 5 fm between nuclear surfaces

To first order: $P \propto |\langle 0^+ || E2 || 2^+ \rangle|^2$

Or... The B(E2) value

Coulomb excitation

We can also access Q_s from angular distribution for state population

The reorientation effect:

Nuclei reorient in electric field gradient to minimise their energy

Typical Coulomb excitation reaction: $dV/dr = 10^{30} V/cm$

 $E(t) \propto e Q_s Z/r^3(t)$

Breaking of m-state degeneracy depends on $\rm Q_{s}$

Experiment at NSCL

- •"Safe" Coulomb excitation of ³²Si beam on a ¹⁹⁶Pt target.
- •Beam energies: 3.57 and 3.48 MeV/u
- •Beam intensity: 10⁶ pps
- •Target thickness: 1 mg/cm²

09/04/24 E. Lunderberg, *et al.*, Nucl. Instrum. Meth. A **885**, 37 (2018)

Experiment at NSCL

Experiment at NSCL

GOSIA analysis

Yields evaluated using GOSIA.

 χ^2 minimization of matrix elements performed using the MIGRAD algorithm in the ROOT MINUIT library.

Simultaneous fitting of ¹⁹⁶Pt matrix elements accounts for systematic errors.

How do the results compare...

- Result for Q_s(2₁⁺) compares well to USDB (although note large errors)
- B(E2) value is significantly overestimated by USDB for ³²Si and ³⁴Si
- USDB is reproducing shape well, but under predicts the magnitude of deformation
- Ab-initio VS-IMSRG compares well... but note there is a truncation to the evolution of the electromagnetic operators at the two-body level [IMSRG(2) approximation]
- Comparison of data for several sd-shell nuclei shows calculations underpredict E2 matrix elements by ≈25% [S. R. Stroberg et al., PRC 105, 034333 (2022)]
- Scaled results are similar to USDB

How do the results compare...

Theoretical descriptions

Summary

³²Si – Inhibited quadrupole deformation

- Nuclear deformation in ³²Si has been investigated through "safe" Coulomb excitation at NSCL, MI, USA
- B(E2; $0_1^+ \rightarrow 2_1^+$) = 135(19) $e^2 fm^4$, $Q_s(2_1^+) = 0.14(8)$ eb
- Phenomenological and ab-initio calculations both reproduce oblate structure but overpredict the scale of deformation
- There is a reduced role of out-of-space excitations (core polarisation)

Collaborators:

J. Henderson¹, C. R. Hoffman², A. M. Hill³, B. Hu⁴, J. D. Holt^{4,5,6}, T. Beck^{3,6}, C. Cousins¹, P. Farris^{3,6}, A. Gade^{3,6}, S. A. Gillespie⁶, H. Iwasaki^{3,6}, S. Kisyov⁷, A. Kuchera⁸, B. Longfellow⁷, C. Müller-Gatermann², E. Rubino⁶, R. Russell¹, R. Salinas^{3,6}, A. Sanchez^{3,6}, D. Weisshaar⁶, C. Y. Wu⁷, J. Wu⁶

¹University of Surrey, Guildford GU2 7XH, UK

²Physics Division, Argonne National Laboratory, Lemont IL, USA

³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 USA

⁴TRIUMF, Vancouver, BC V6T 2A3, Canada

⁵Department of Physics, McGill University, 3600 Rue University, Montréal, QC H3A 2T8, Canada

⁶National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing Michigan 48824 USA

⁷Lawrence Livermore National Laboratory, Livermore, California 94550, USA

⁸Department of Physics, Davidson College, Davidson, North Carolina 28035, USA