Two-centre HO basis for Skyrme HF: α clustering in ⁸Be and ²⁴Mg \rightarrow ¹²C+¹²C as a proof of principles calculations

Adrián Sánchez Fernández Joint APP, HEPP and NP Conference, Liverpool (April, 2024)

Science and Technology Facilities Council

Fission is complex

- 1. Time-dependent process
- 2. All particles involved

3. Sensitive to the state of compound nucleus

4. Large deformations

5. Different ways to go through the fission path

6. Description of separated fragments

	Entrance Channel
Energy	(Z <u>-1,N</u> +1)
	induced Fission
	<u></u>
	Sponta Fissiol

M. Bender et al 2020, J. Phys. G: Nucl. Part. Phys. 47 113002

Elongation

And theory and experiment are still fighting (angular momentum generation problem)

Guillaume Scamps Phys. Rev. C 106 (2022) 054614

And theory and experiment are still fighting (angular momentum generation problem)

Guillaume Scamps Phys. Rev. C 106 (2022) 054614

DFT Solver (HFODD)

The main goal of the project is to develop a DFT solver to control fission fragment's...

- 1. Separation
- 2. Deformation
- Orientation 3.

In the style of LCAO, the s.p. wave function reads as:

$$\Psi_{\alpha}(\mathbf{r}\sigma) = \sum_{i=A}^{B} \sum_{\mathbf{n}=0}^{N_{0}} \sum_{s_{z}=-1/2}^{1/2} \mathbb{C}_{\alpha}^{\mathbf{n},i,s_{z}} \varphi_{n_{x},i}(x) \varphi_{n_{y},i}(y) \varphi_{$$

where the (shifted) HO basis states:

$$\varphi_{n_{\mu},i}(r_{\mu}) = \sqrt{\frac{b_{\mu,i}}{\sqrt{\pi}2^{n_{\mu}}n_{\mu}!}} H_{n_{\mu}} \left[b_{\mu,i}(r_{\mu} - r_{\mu0,i})\right] e^{-\frac{1}{2}b_{\mu,i}^{2}(r_{\mu} - r_{\mu0,i})^{2}}$$

Some preliminary results

Hass et al., Inorganic Chemistry from Libretexts Chemistry

The key ingredient is to build the local density

which now can be expanded as

 $\rho(\mathbf{r}\sigma) = \rho(\mathbf{r}\sigma)_{AA} + \rho(\mathbf{r}\sigma)_{BB} + 2\operatorname{Re}\left[\rho(\mathbf{r}\sigma)_{AB}\right]$

5

$$\rho_{AA}(r) \qquad \rho_{BB}(r)$$

$$\rho(\mathbf{r}\sigma) = \sum v_{\alpha}^{2} \Psi_{\alpha}^{*}(\mathbf{r}$$

lpha

Coulomb interaction

Some preliminary results

$(\mathbf{r}\sigma)\Psi_{\alpha}(\mathbf{r}\sigma)$

(r)

W. Kohn (1923-2016)

P. Hohenberg (1934-2017)

DFT Solver (HFODD)

Apart from that, the self-consistent loop stays the same

Coulomb interaction

Some preliminary results

Step 0:

- To diagonalise the Nilsson Hamiltonian
- 2. Densities in space from OCHO calculation

DFT Solver (HFODD)

Apart from that, the self-consistent loop stays the same

Coulomb interaction

Some preliminary results

Step 1:

$$\rho_{\alpha}(\boldsymbol{r}) = \rho_{\alpha}(\boldsymbol{r}, \boldsymbol{r}), \qquad (5a)$$

$$s_{\alpha}(\boldsymbol{r}) = s_{\alpha}(\boldsymbol{r}, \boldsymbol{r}), \qquad (5b)$$

$$\tau_{\alpha}(\boldsymbol{r}) = \left[\boldsymbol{\nabla} \cdot \boldsymbol{\nabla}' \rho_{\alpha}(\boldsymbol{r}, \boldsymbol{r}')\right]_{\boldsymbol{r}=\boldsymbol{r}'}, \qquad (6a)$$

$$T_{\alpha}(\mathbf{r}) = \left[\nabla \cdot \nabla' s_{\alpha}(\mathbf{r}, \mathbf{r}') \right]_{\mathbf{r}=\mathbf{r}'}, \qquad (6b)$$

$$\boldsymbol{j}_{\alpha}(\boldsymbol{r}) = \frac{1}{2i} \left[(\boldsymbol{\nabla} - \boldsymbol{\nabla}') \rho_{\alpha}(\boldsymbol{r}, \boldsymbol{r}') \right]_{\boldsymbol{r}=\boldsymbol{r}'}, \quad (7a)$$

$$J_{\mu\nu,\alpha}(\boldsymbol{r}) = \frac{1}{2i} \left[(\nabla_{\mu} - \nabla'_{\mu}) s_{\nu,\alpha}(\boldsymbol{r}, \boldsymbol{r}') \right]_{\boldsymbol{r}=\boldsymbol{r}'}.$$
 (7b)

J. Dobaczewski and J. Dudek 1997 Computer Physics Communications 102 166–182

DFT Solver (HFODD)

Apart from that, the self-consistent loop stays the same

Coulomb interaction

Some preliminary results

Step 2:

$$\mathcal{E}^{\text{Skyrme}} = \sum_{t=0,1} \int d^3 \boldsymbol{r} \left(\mathcal{H}_t^{\text{even}}(\boldsymbol{r}) + \mathcal{H}_t^{\text{odd}}(\boldsymbol{r}) \right), \quad (11)$$
$$h'_p = -\frac{\hbar^2}{2m} \Delta + \left(\Gamma_0^{\text{even}} + \Gamma_0^{\text{odd}} - \Gamma_1^{\text{even}} - \Gamma_1^{\text{odd}} \right)$$
$$+ U^{\text{Coul}} + U^{\text{mult}} - \omega_y \hat{J}_y. \quad (11)$$

J. Dobaczewski and J. Dudek 1997 Computer Physics Communications 102 166–182

DFT Solver (HFODD)

Apart from that, the self-consistent loop stays the same

Since the basis is not orthogonal we transform through Löwdin's canonical orthogonalisation.

Coulomb interaction

Some preliminary results

Step 3: To diagonalise the Hamiltonian and "try again"

$\mathbb{H}\mathbb{C} = e\mathbb{N}\mathbb{C}$

7

Coulomb interaction

Some preliminary results

We implemented the full Coulomb interaction: direct+exchange*

$$\hat{V}(\mathbf{r}_1, \mathbf{r}_2) = \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|} \hat{\sigma}_0^{(1)} \hat{\sigma}_0^{(2)} \delta_{\tau, p}^{(1)} \delta_{\tau, p}^{(2)} \left(1 - \hat{P}^{\sigma} \hat{P}^{\tau}\right)$$

expanding the form factor as a sum of Gaussians

$$\frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} = \sum_{\gamma}^{N_C} A_{\gamma} e^{-a_{\gamma} (\mathbf{r}_1 - \mathbf{r}_2)^2}$$

*The impact of the exchange term in the scission configuration has been never explored.

DFT Solver (HFODD)

⁸Be as $\alpha + \alpha$

The TCHO basis seems to capture the structure even for a smaller number of shells

OCHO: deformed basis adapted to g.s. deformation TCHO: spherical bases adapted to ⁴He separated 2 fm.

DFT Solver (HFODD)

 $^{24}Mg \rightarrow ^{12}C + ^{12}C$

TCHO method works also for describing compound nuclei

Coulomb interaction

Some preliminary results

A cut-off of 10⁻⁴ is enough for a good convergence of results.

$^{24}Mg \rightarrow ^{12}C + ^{12}C$

Even with a small number of shells, the tail after scission is better reproduced

No need of additional constraints in higher-rank multipole deformations

Axiality obtained selfconsistently due to co-axial bases.

What we did so far

DFT solver free of assumptions, as much general as possible J. Dobaczewski (2019), arXiv:1910.03924

Novel functionals in two-centre 3D basis

- Asymmetric fission
- Orientation of fragments
- Fission paths and inertia tensor in adiabatic approx.
- Fragment distributions using Langevin equations

Correlations using QRPA

Two-centre time-dependant HO basis

Test thermal approximation (QRPA+time evolution) Test adiabatic approximation (odd nuclei)

The long-range plan

DFT solver free of assumptions, as much general as possible J. Dobaczewski (2019), arXiv:1910.03924

Novel functionals in two-centre 3D basis

Asymmetric fission

Orientation of fragments

Fission paths and inertia tensor in adiabatic approx.

Fragment distributions using Langevin equations

Correlations using QRPA

Two-centre time-dependant HO basis

Test thermal approximation (QRPA+time evolution) Test adiabatic approximation (odd nuclei)

Constraints in the fragment population (upcoming publication)

- Most favourable paths

- Odd-mass nuclei: where does the loner nucleon go?

- alpha particle emission

