Tracing two-neutron halos in $\mathbf{N}=\mathbf{2 8}$ isotones: A three-body adventure

Jagjit Singh
jagjit.singh@manchester.ac.uk
IOP Joint APP, HEP, and NP Conference, Liverpool.
Parallel Session: H, 10.04.2024 (11:00-11:15)

```
Based on:
Prediction of two-neutron halos in the N=28 isotones }\mp@subsup{}{}{40}\textrm{Mg}\mathrm{ and }\mp@subsup{}{}{39}\textrm{Na
Jagjit Singh (UoM), J. Casal (Seville), W. Horiuchi (OMU, Osaka), N. R. Walet (UoM), W. Satula (Warsaw)
arXiv:2401.05160 (2024).
```


MANCHESTER Introduction: Weakly-bound neutron-rich systems
 $$
1824
$$

The University of Manchester

Stable
Separation Energy $\sim 8 \mathrm{MeV}$

Picture: L. Moschini Master Thesis (ArXiv:1410.7167)

- Valence nucleon(s) - weakly bound. ${ }^{11} \mathrm{Be}\left({ }^{10} \mathrm{Be}+n\right) \mathrm{S}_{\mathrm{n}}=\mathbf{0 . 5 0 3} \mathrm{MeV},{ }^{6} \mathrm{He}\left({ }^{4} \mathrm{He}+n+n\right) \mathrm{S}_{2 \mathrm{n}}=\mathbf{0} .973 \mathrm{MeV}$. P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
- Role and treatment of continuum is more significant. JS, PhD thesis, University of Padova (2016).
- Few-body approaches are convenient tool for such systems. JS et al., PRC 101, 024310 (2020).
- Exotic features such as halo/Borromean formation I. Tanihata et al., Phys. Rev. Lett., 55 (1985) 2676.
- Strong short-range cluster like correlation di-neutron - which plays important role in their binding mechanisms leads to weak binding of the system and low-density at the surface. A.B.Migdal Sov. J. Nucl. Phys. 16, 238 1973. M.Matsuo PRC 73, 044309 (2006). A.Gezerlis, PRC 81, 025803 (2010).

MANCHESTER Halo formation on lower Z-side of the magic numbers $\mathbf{N}=\mathbf{2 0}$ and 28

The University of Manchester

${ }^{33} \mathrm{Si}$	${ }^{34} \mathrm{Si}$	${ }^{35} \mathrm{Si}$	${ }^{36} \mathrm{Si}$	${ }^{37} \mathrm{Si}$	${ }^{38} \mathrm{Si}$	${ }^{39} \mathrm{Si}$	${ }^{40} \mathrm{Si}$	${ }^{41} \mathrm{Si}$	${ }^{42} \mathrm{Si}$	${ }^{43} \mathrm{Si}$	${ }^{44} \mathrm{Si}$	${ }^{45} \mathrm{Si}$
${ }^{32} \mathrm{Al}$	${ }^{33} \mathrm{Al}$	${ }^{34} \mathrm{Al}$	${ }^{35} \mathrm{Al}$	${ }^{36} \mathrm{Al}$	${ }^{37} \mathrm{Al}$	${ }^{38} \mathrm{Al}$	${ }^{39} \mathrm{Al}$	${ }^{40} \mathrm{Al}$	${ }^{41} \mathrm{Al}$	${ }^{42} \mathrm{Al}$	${ }^{43} \mathrm{Al}$	
${ }^{31} \mathrm{Mg}$	${ }^{32} \mathrm{Mg}$	${ }^{33} \mathrm{Mg}$	${ }^{34} \mathrm{Mg}$	${ }^{35} \mathrm{Mg}$	${ }^{36} \mathrm{Mg}$	${ }^{37} \mathrm{Mg}$	${ }^{38} \mathrm{Mg}$	${ }^{39} \mathrm{Mg}$		${ }^{41} \mathrm{Mg}$		
${ }^{30} \mathrm{Na}$	${ }^{31} \mathrm{Na}$	${ }^{32} \mathrm{Na}$	${ }^{33} \mathrm{Na}$	${ }^{34} \mathrm{Na}$	${ }^{35} \mathrm{Na}$	${ }^{36} \mathrm{Na}$	${ }^{37} \mathrm{Na}$	${ }^{38} \mathrm{Na}$	Na			
${ }^{29} \mathrm{Ne}$	${ }^{30} \mathrm{Ne}$	${ }^{31} \mathrm{Ne}$	${ }^{32} \mathrm{Ne}$	${ }^{33} \mathrm{Ne}$	${ }^{34} \mathrm{Ne}$				$\mathrm{N}=28$			
F	${ }^{29} \mathrm{~F}$	${ }^{30} \mathrm{~F}$	${ }^{31} \mathrm{~F}$									

- Recent observation of the disappearance of the $\mathbf{N}=\mathbf{2 0}$ shell gap at the low-Z side of the $\mathrm{N}=20$ chain, led to the identification of the ${ }^{29} \mathbf{F}$ system as the heaviest known two-neutron Borromean-halo nucleus. S. Bagchi et al., PRL 124, 222504 (2020). JS et. al., PRC 101, 024310 (2020). LF, JC, WH, JS et. al., Comm. Physics 3, 132 (2020). JC, JS, et. al., PRC 102,064227 (2020).
- Motivated by this observation, it is interesting to explore the low-Z side of the $\mathrm{N}=28$ shell closure for potential two-neutron Borromean halos in the Na and Mg isotopes).

- The $1 \mathrm{f}_{7 / 2}$ orbit is bordered by two magic numbers, i.e., 20 and 28.20 has a HO origin, whereas the $\mathbf{2 8}$ has a SO origin.
- Inversion occur, when energy gap, associated with filling of shell closures disappears.
$\underset{1824}{\text { MANCHESTR }}$ Neutron-rich \mathbf{F}, Na, and Mg isotopes

-- ground state resonance of ${ }^{28} \mathrm{~F}$ at 0.199(6) MeV (1=1~79\%)

Inversion !!
-- Ist excited state resonance around 0.966 MeV (l=2~72\%)

PRL 124, 152502 (2020).

```
s}\mp@subsup{\textrm{s}}{2}{}=1.443(436) MeV
    =1.440 (650) MeV
PRL. 109, 202503 (2012).
CPCC 41, 030003 (2017).
```

Tools : Three-body structure model and Glauber reaction theory.

${ }^{40} \mathrm{Mg}(\mathrm{Z}=12, \mathrm{~N}=28)$ H. L. Crawford et al. Phys. Rev. Lett. 122, 052501 (2019). T. Baumann et al., Nature volume 449, 1022 (2007). A. O. Macchiavelli, et al., Eur. Phys. J. A 58, 66 (2022).	$\left(\begin{array}{c} \text { Weakly } \\ \text { Bound } \\ \mathbf{3 8}_{\mathbf{M g}+\mathbf{n}+\mathbf{n}} \end{array}\right)$	$\mathrm{s}_{2 \mathrm{n}}=0.670 \pm 0.710 \mathrm{MeV}$ Chinese Physics C 45 (3), 030003 (2021). No experimental data on ${ }^{39} \mathrm{Mg}$ spectrum Theoretical predictions within GSM
${ }^{39} \mathrm{Na}(\mathrm{Z}=11, \mathrm{~N}=28)$ Discovery of 39Na D. S. Ahn et al., PRL 129, 212502 (2022). KY Zhang et al., PRC 107, L04130303 (2023).	$\left(\begin{array}{c} \text { Weakly } \\ \text { Bound } \\ \mathbf{3 7}^{\mathbf{N}} \mathbf{N a + n + n} \end{array}\right)$	No data on ${ }^{38} \mathrm{Na}$ spectrum and $\mathrm{s}_{2 \mathrm{n}}$ of ${ }^{39} \mathrm{Na}$.

MANCHESTER \quad Three-Body Structure Model- Hyperspherical framework
Three-body Hamiltonian is given by

$$
H=T+\sum_{i=1}^{2} V_{\text {core }+n_{i}}+V_{n n}+V_{3 b}
$$

$$
V_{\text {core }+n_{i}}=\left(-V_{0}+V_{l s} \vec{l} \cdot \vec{s} \frac{1}{r} \frac{d}{d r}\right) \frac{1}{1+\exp \left(\frac{r-R}{a}\right)}, \quad V_{3 b}(\rho)=v_{3 b} e^{-\left(\rho / \rho_{o}\right)^{2}},
$$

FIG. 1. Jacobi- T (left) and $-Y$ (right) coordinates for the ${ }^{29} \mathrm{~F}$ nucleus described as ${ }^{27} \mathrm{~F}+n+n$.
nn interaction- Gogny-Pires-Tourreil (GPT) interaction including central, spin-orbit and tensor terms.
D. Gogny, P. Pires, and R. D. Tourreil, PLB 32, 591 (1970).

The three-body force is modelled as a simple Gaussian potential, where $\rho=\sqrt{x^{2}+y^{2}}$, is hyper-radius and $\rho_{0}=6 \mathrm{fm}$ and the strength $\mathrm{V}_{3 \mathrm{~b}}$ is adjusted to recover $\mathrm{s}_{2 \mathrm{n}}$.

We use the analytical transformed harmonic oscillator (THO) basis.
J. Casal, M. Rodrguez-Gallardo, and J. M. Arias, Phys. Rev. C 88, 014327 (2013).

The diagonalization of the three-body Hamiltonian requires the computation of the corresponding kinetic energy \& potential matrix elements.

MANCHESTER Reaction cross-section within Glauber model

The University of Manchester
The reaction cross section for a projectile-target collision integrating the reaction probability with respect to the impact parameter b
Y. Ogawa et al., Prog. Theor. Phys. Suppl. 142, 157 (2001a) $\quad \sigma_{\mathrm{R}}=\int \boldsymbol{d b}\left(1-\left|\mathrm{e}^{i \chi(\boldsymbol{b})}\right|^{2}\right)$,

Phase shift function

$$
\mathrm{e}^{\mathrm{i} \chi(\boldsymbol{b})}=\left\langle\Phi_{0}^{P} \Phi_{0}^{T}\right| \prod^{A_{P}} \prod^{A_{T}}\left[1-\Gamma_{N N}\left(s_{i}^{P}-s_{j}^{T}+\boldsymbol{b}\right)\right]\left|\Phi_{0}^{P} \Phi_{0}^{T}\right\rangle
$$

$$
\Gamma_{N N}(\boldsymbol{b})=\frac{1-i \alpha}{4 \pi \beta} \sigma_{N N}^{\text {tot }} \exp \left(-\frac{b^{2}}{2 \beta}\right)
$$

α, β : determined so as to reproduce the NN scattering
B. Abu-Ibrahim et al., PRC 77, 034607 (2008). W. Horiuchi et al., PRC 75, 044607 (2007).

Phase-shift function: Many-body operator

Approximate using a cumulant expansion: Nucleon-Target profile function \rightarrow Input: Nuclear density and Profile function no adjustable parameters

Profile function $\quad \Gamma_{N N}(b)=\frac{1-i \alpha}{4 \pi \beta} \sigma_{N N}^{\text {tot }} \exp \left(-\frac{b^{2}}{2 \beta}\right)$

- $r_{i}=\left(s_{i}, z_{i}\right)$ is the coordinate of the twohalo neutron(s) with index $i=1,2$.
- $\mathrm{R}_{\mathrm{C}}, \mathrm{R}_{\mathrm{p}}$, and R_{T} are the position vectors to the COM of the core nucleus, projectile nucleus, and target nucleus, respectively. $x_{i}-R_{C}=r_{i}$.
- s_{i} and s_{j} are the two-dimensional vectors of the coordinates for the P and T , measured from their COM which lies on a plane perpendicular to the incident momentum of the projectile

MANCHESTER Two-body (core+n) models for ${ }^{\mathbf{3 9}} \mathbf{M g}$ and ${ }^{\mathbf{3 8}} \mathbf{N a}$

The University of Manchester

K. Fossez, et. al., PHYSICAL REVIEW C 94, 054302 (2016).

Unbound ground state of ${ }^{39} \mathrm{Mg}$ is predicted to be either a $\boldsymbol{J}^{\pi}=7 / 2^{-}$or $3 / 2^{-}$state.

A narrow $J^{\pi}=7 / 2^{-}$or $3 / 2^{-}$ground-state candidate exhibits a resonant structure at 129 KeV .

Table 1: Parameter sets for the ${ }^{38} \mathrm{Mg}+n$ (upper-panel) and ${ }^{37} \mathrm{Na}+n$ (lowerpanel) Woods-Saxon interactions, Eq. (6). Here a is diffuseness, $V_{0}^{(l)}$ is the potential depth and E_{R} is the position of the resonances. Note that $r_{0}=1.25 \mathrm{fm}$, and $V_{l s}=16.842 \mathrm{MeV}$ (for ${ }^{38} \mathrm{Mg}+n$) and $16.324 \mathrm{MeV}\left(\right.$ for ${ }^{37} \mathrm{Na}+n$) are fixed.

		${ }^{38} \mathrm{Mg}+n$			
Set	Scenario	$a(\mathrm{fm})$	$l j$	$V_{0}^{(l)}(\mathrm{MeV})$	$E_{R}(\mathrm{MeV})$
$\mathbf{1}$	Normal	0.70	$f_{7 / 2}$	38.225	0.129
			$p_{3 / 2}$	38.225	0.349
$\mathbf{2}$	Degenerate	0.75	$f_{7 / 2}$	38.400	0.129
			$p_{3 / 2}$	38.400	0.135
$\mathbf{3}$	Inverted	0.75	$f_{7 / 2}$	37.880	0.349
			$p_{3 / 2}$	38.425	0.130

${ }^{37} \mathrm{Na}+n$

$\mathbf{1}$	Degenerate	0.70	$f_{7 / 2}$	38.225	0.539
			$p_{3 / 2}$	38.225	0.599
$\mathbf{2}$	Inverted	0.75	$f_{7 / 2}$	38.400	0.522
			$p_{3 / 2}$	38.400	0.271
$\mathbf{3}$	Inverted	0.75	$f_{7 / 2}$	37.880	0.734
			$p_{3 / 2}$	38.425	0.265

$\underset{1824}{\text { MANCHESTER }}$ Configuration mixing and matter radii for ${ }^{40} \mathbf{M g}$ and ${ }^{\mathbf{3 9}} \mathbf{N a}$
The University of Manchester
${ }^{40} \mathbf{M g}\left(\mathrm{~s}_{2 \mathrm{n}}\right)=0.670(0.710) \mathrm{MeV}$
M. Wang, et. al., Chinese Physics C 45 (3), 030003 (2021).

Matter radius of core ${ }^{38} \mathbf{M g}=3.60 \mathrm{fm}$
S. Watanabe, et. al., PRC 89, 044610 (2014).

MANCHESTER Matter radii for ${ }^{40} \mathbf{M g}$ and ${ }^{\mathbf{3 9}} \mathbf{N a}$

The University of Manchester

- Dotted black lines in the figure correspond to the weighted fit of the experimental data points with the standard $\mathrm{R}_{0} \mathrm{~A}^{1 / 3}$ formula.
- The radii of ${ }^{40} \mathrm{Mg}$ and ${ }^{39} \mathrm{Na}$ are higher than the standard fitted value.
- This observation implies a likely twoneutron halo structure in the ground state of ${ }^{40} \mathrm{Mg}$ and ${ }^{39} \mathrm{Na}$, and the corresponding melting of the traditional $\mathrm{N}=28$ shell gap is due to the intrusion of the $p_{3 / 2}$ orbital.

- Ozawa et al., Nuclear Physics A 691 (3), 599 (2001).
- Kanungo et al., Phys. Rev. C 83, 021302 (2011).
- Takechi et al., Phys. Rev. C 90, 061305(R) (2014)

Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

MANCHESTER Reaction cross-sections for ${ }^{40} \mathbf{M g}$ and ${ }^{39} \mathbf{N a}$: within Glauber reaction theory

The University of Manchester

- Experimentally, a very obvious way to determine whether a nucleus is a halo nucleus, is to look for an enhanced reaction cross section. Thus, we examine the total reaction cross section by employing the conventional Glauber theory. B. Abu-Ibrahim et al, PRC 77, 034607 (2008). W. Horiuchi et al., PRC 75, 044607 (2007).
- Using this prescription, we predict the σ_{R} for ${ }^{40} \mathrm{Mg}$ and ${ }^{39} \mathrm{Na}$ at different incident energies. The predicted values of σ_{R} for ${ }^{40} \mathrm{Mg}$ and ${ }^{39} \mathrm{Na}$ show significant enhancement with respect to the observed σ_{R} in the lower-A isotopes for both choices of energy.

Thus, our results provide a clear signal of the 2n-halo structure formation in ${ }^{40} \mathrm{Mg}$ and ${ }^{39} \mathrm{Na}$ and hence melting of the $\mathbf{N}=\mathbf{2 8}$ shell closure.

- Ozawa et al., Nuclear Physics A 691 (3), 599 (2001).
- Kanungo et al., Phys. Rev. C 83, 021302 (2011).
- Takechi et al., Phys. Rev. C 90, 061305(R) (2014).
- Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

MANCHESTER Summary:

The University of Manchester

- We started with studying melting of $\mathrm{N}=20$ (JS, JC, WH, LF, and AV, PRC 101, 024310 (2020)) for ${ }^{29} \mathrm{~F}$. Our predictions got boost with new measurements (S. Bagchi et al., PRL 124, 222504 (2020) and A. Revel et al., PRL 124, 152502 (2020)). We updated our calculations with precise calculations along with detailed analysis of electric-dipole response and reaction calculations (LF, JC, WH, JS, and AV, Nature: Commun. Phys. 3, 132 (2020) and JC, JS, LF, WH, and AV, PRC 102, 064627 (2020)).
- Motivated by melting $\mathrm{N}=20$ ends up in formation of Borromean in ${ }^{29} \mathrm{~F}$, by using same prescription we reported first three body calculations for ${ }^{39} \mathrm{Na}$ and ${ }^{40} \mathrm{Mg}$ lying on low-Z side of $\mathrm{N}=28$. (JS, JC, WH, $N W$, and wS arXiv:2401.05160 [nucl- th] (2024)),
- Our results calls for new precise mass measurements for $\mathrm{s}_{2 \mathrm{n}}$ of three-body systems and the low-lying continuum spectrum of subsystems to better constrain the theoretical models.
- The disappearance of the conventional $\mathrm{N}=28$ shell gap and emergence of the halo leads to significant occupancy of intruder $p_{3 / 2}$ orbit in the ground state of ${ }^{39} \mathrm{Na}$ and ${ }^{40} \mathrm{Mg}$. Nevertheless, it is imperative to verify this conclusion through experimental measurements of interaction cross sections.

Future Perspectives:

- It is interesting to see how our predictions/results alter with inclusion of core deformation effects.

Thanks for kind attention.

Acknowledgements:

J. Casal (Seville)
W. Horiuchi (OMU, Osaka)
N. R. Walet (Manchester)
W. Satula (Warsaw)
L. Fortunato (Padova)
A. Vitturi (Padova)

MANCHESTER
 Key features of halo nuclei

The University of Manchester

- Halo nuclei (manifestation of nuclear clustering) exhibit: a diffuse density distribution, low one or more valence neutron(s) separation energies ($s_{n} / s_{2 n}$), abnormally large matter radius and large interaction cross sections. P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
- Borromean systems (2n-halo): Corresponding core $+\boldsymbol{n}$ subsystems being unbound, the strong correlations between the valence neutrons are key in binding two-neutron halos M. Zhukov et. al, Phys. Rep. 231, 151 (1993). Y. Kikuchi et al, PTEP 2016, 103 D03 (2016). Hagino \& Sagawa, PRC 72, 044321 (2005). Observed examples: ${ }^{6} \mathrm{He},{ }^{11} \mathrm{Li}$, and ${ }^{14} \mathrm{Be},{ }^{17} \mathrm{~B},{ }^{19} \mathrm{~B}$, ${ }^{22} \mathrm{C}$ and ${ }^{29} \mathrm{~F}$.
- Low-lying spectra of the unbound core+n subsystems play an important role in shaping the properties of Borromean nuclei. One of the other salient features of halo nuclei is an enhancement of the low-lying E1 (electric dipole) strength into the continuum T. Aumann, EPJA 55,234 (2019) . Experimentally this has been observed via invariant mass spectroscopy in Coulomb dissociation (CD) experiments.
- Theoretically three-body (core $\boldsymbol{+} \boldsymbol{n}+\boldsymbol{n}$) models have been found to describe reasonably well these features in Borromean nuclei.

R. Kanungo, Handbook of Nuclear Physics (2023).

S. Bagchi et al., PRL 124, 222504 (2020).

K. Cook et. al., PRL 124, 212503 (2020)

Key inputs:

- Information on core +n low-lying spectrum
- Two-neutron separation energy

JS et al., PRC 101, 024310 (2020).
JS et al., arXiv:2401.05160 [nucl- th] (2024).

MANCHESTER 1824
 Success story of ${ }^{29}$ F

The University of Manchester
New Experiment confirms ground state resonance of ${ }^{28} \mathrm{~F}$ at 0.199 (6) $\mathrm{MeV}(\mathrm{l}=1 \sim 79 \%)$ and Ist excited state resonance around $0.966 \mathrm{MeV}(1=2 \sim 72 \%)$. Inversion !!
A. Revel et al., PRL 124, 152502 (2020).

Total reaction Cross section within Glauber Model

The calculated total reaction cross section using the standard flauber theory are 1370 mb if we assume $\mathrm{s}_{2 \mathrm{n}}=1.44 \mathrm{MeV}$, and 1300 mb if we take the lower limit $\left(\mathrm{S}_{2 \mathrm{n}} \approx 1 \mathrm{MeV}\right)$, which are in good agreement with the observed interaction cross section $1396 \pm 28 \mathrm{mb}$.
JC, JS, et. al., PRC 102, 064627 (2020).
$\mathrm{s}_{2 \mathrm{n}}\left({ }^{29} \mathrm{~F}\right)=1.443$ (436) MeV PRL. 109, 202503 (2012)

Matter radius of 29 F

The relative increase of matter radii with respor lies in the range $0.20-0.25 \mathrm{fm}$ in the different divices of $\mathrm{s}_{2 \mathrm{n}}$ whereas experimental value is 0.35 (0.08) fm. \qquad

JS ,JC, WH, LF and AV, PRC 101, 024310 (2020).

Background: Inversion mechanism

Standard ordering

Inversion occur, when $\Delta \mathrm{E}$, associated with filling of 20 neutrons, disappears and one level (or more) of the pf-shell $(N=3)$ gets lower than one (or more) of the levels of the sd-shell $(N=2)$.
$\mathrm{U}(\mathrm{r})=\mathrm{H} . \mathrm{O}$.

The $1 \mathrm{f}_{7 / 2}$ orbit is bordered by two magic numbers, i.e., 20 and 28 20 has a HO origin, whereas the $\mathbf{2 8}$ has a SO origin.

