

Tracing two-neutron halos in N=28 isotones: A three-body adventure

Jagjit Singh

jagjit.singh@manchester.ac.uk

IOP Joint APP, HEP, and NP Conference, Liverpool.

Parallel Session: H, 10.04.2024 (11:00-11:15)

Based on:

Prediction of two-neutron halos in the N=28 isotones ⁴⁰Mg and ³⁹Na

Jagjit Singh (UoM), J. Casal (Seville), W. Horiuchi (OMU, Osaka), N. R. Walet (UoM), W. Satula (Warsaw) arXiv:2401.05160 (2024).

- Valence nucleon(s) weakly bound. ¹¹Be (¹⁰Be+n) $S_n = 0.503$ MeV, ⁶He (⁴He+n+n) $S_{2n} = 0.973$ MeV. P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
- Role and treatment of continuum is more significant. JS, PhD thesis, University of Padova (2016). ٠

MANCHESTER

- Few-body approaches are convenient tool for such systems. JS et al.,, PRC 101, 024310 (2020).
- Exotic features such as halo/Borromean formation I. Tanihata et al., Phys. Rev. Lett., 55 (1985) 2676. ٠
- Strong short-range cluster like correlation di-neutron which plays important role in their binding mechanisms leads to weak binding of the ٠ system and low-density at the surface. A.B.Migdal Sov. J. Nucl. Phys. 16, 238 1973. M.Matsuo PRC 73, 044309 (2006). A.Gezerlis, PRC 81, 025803 (2010).

MANCHESTER Halo formation on lower Z-side of the magic numbers N=20 and 28

The University of Manchester

³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	⁴² Si	⁴³ Si	⁴⁴ Si	⁴⁵ Si
³² Al	³³ Al	³⁴ Al	³⁵ Al	³⁶ Al	³⁷ Al	³⁸ Al	³⁹ Al	⁴⁰ Al	⁴¹ Al	⁴² Al	⁴³ Al	
³¹ Mg	g ³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg	³⁹ Mg	⁴⁰ Mg	⁴¹ Mg		
³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na	³⁶ Na	³⁷ Na	³⁸ Na	³⁹ Na			
²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	³³ Ne	³⁴ Ne		-	-	N=28	-		
²⁸ F	²⁹ F	³⁰ F	³¹ F		1							

N=20

- Recent observation of the disappearance of the N = 20 shell gap at the low-Z side of the N = 20 chain, led to the identification of the ²⁹F system as the heaviest known two-neutron Borromean-halo nucleus. S. Bagchi et al., PRL 124, 222504 (2020). JS et. al., PRC 101, 024310 (2020). LF, JC, WH, JS et. al., Comm. Physics 3, 132 (2020). JC, JS, et. al., PRC 102, 064227 (2020).
- Motivated by this observation, it is interesting to explore the low-Z side of the N = 28 shell closure for potential two-neutron Borromean halos in the Na and Mg isotopes).

- The 1f_{7/2} orbit is bordered by two magic numbers, i.e., 20 and 28. **20** has a HO origin, whereas the **28** has a SO origin.
- Inversion occur, when energy gap, associated with filling of shell closures disappears.

Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

Three-Body Structure Model- Hyperspherical framework

The University of Manchester

MANCHESTER

Three-body Hamiltonian is given by

$$H = T + \sum_{i=1}^{2} V_{core+n_i} + V_{nn} + V_{3b}$$

 $V_{core+n_{l}} = \left(-V_{0} + V_{ls}\vec{l}\cdot\vec{s}\frac{1}{r}\frac{d}{dr}\right)\frac{1}{1 + \exp\left(\frac{r-R}{a}\right)}, \qquad V_{3b}(\rho) = v_{3b}e^{-(\rho/\rho_{o})^{2}},$

FIG. 1. Jacobi-T (left) and -Y (right) coordinates for the 29 F nucleus described as 27 F + n + n.

nn interaction- Gogny-Pires-Tourreil (GPT) interaction including central, spin-orbit and tensor terms. *D. Gogny, P. Pires, and R. D. Tourreil, PLB* 32, 591 (1970).

2

The three-body force is modelled as a simple Gaussian potential, where $\rho = \sqrt{x^2 + y^2}$, is **hyper-radius** and $\rho_0=6$ fm and the strength v_{3b} is adjusted to recover s_{2n} .

We use the analytical transformed harmonic oscillator (THO) basis. *J. Casal, M. Rodrguez-Gallardo, and J. M. Arias, Phys. Rev. C* 88, 014327 (2013).

The diagonalization of the three-body Hamiltonian requires the computation of the corresponding kinetic energy & potential matrix elements.

J. Casal, "Weakly-bound three-body nuclear systems: Structure, reactions and astrophysical implications," Ph.D. thesis, Universidad de Sevilla (2016).

PHYSICAL REVIEW C 102, 064627 (2020)

MANCHESTER Reaction cross-section within Glauber model

The University of Manchester

The reaction cross section for a projectile-target collision integrating the reaction probability with respect to the impact parameter b

Y. Ogawa et al., Prog. Theor. Phys. Suppl. 142, 157 (2001a)

$$\sigma_{\mathrm{R}} = \int d\boldsymbol{b} (1 - |\mathrm{e}^{i\chi(\boldsymbol{b})}|^2),$$

Phase shift function

$$e^{i\chi(\boldsymbol{b})} = \left\langle \Phi_0^P \Phi_0^T \right| \prod_{i=1}^{A_P} \prod_{j=1}^{A_T} \left[1 - \Gamma_{NN} (\boldsymbol{s}_i^P - \boldsymbol{s}_j^T + \boldsymbol{b}) \right] \left| \Phi_0^P \Phi_0^T \right|$$

Profile function $\Gamma_{NN}(\boldsymbol{b}) = \frac{1 - i\alpha}{4\pi\beta} \sigma_{NN}^{\text{tot}} \exp\left(-\frac{\boldsymbol{b}^2}{2\beta}\right)$

α, β: determined so as to reproduce the NN scattering B. Abu-Ibrahim et al., PRC 77, 034607 (2008). W. Horiuchi et al., PRC 75, 044607 (2007).

Phase-shift function: Many-body operator

Approximate using a cumulant expansion: Nucleon-Target profile function → Input: Nuclear density and Profile function no adjustable parameters

MANCHESTER 1824 **Two-body (core+n) models for ³⁹Mg and ³⁸Na**

The University of Manchester

K. Fossez, et. al., PHYSICAL REVIEW C 94, 054302 (2016).

Unbound ground state of ³⁹Mg is predicted to be either a $J^{\pi} = 7/2^{-}$ or $3/2^{-}$ state.

A narrow $J^{\pi} = 7/2^{-}$ or $3/2^{-}$ ground-state candidate exhibits a resonant structure at 129 KeV.

Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

Table 1: Parameter sets for the ³⁸Mg + *n* (upper-panel) and ³⁷Na + *n* (lowerpanel) Woods-Saxon interactions, Eq. (6). Here *a* is diffuseness, $V_0^{(l)}$ is the potential depth and E_R is the position of the resonances. Note that $r_0 = 1.25$ fm, and $V_{ls} = 16.842$ MeV (for ³⁸Mg + *n*) and 16.324 MeV (for ³⁷Na + *n*) are fixed.

			38 Mg + n			
Set	Scenario	<i>a</i> (fm)	lj	$V_0^{(l)}$ (MeV)	E_R (MeV)	
1	Normal	0.70	$f_{7/2} \ p_{3/2}$	38.225 38.225	0.129 0.349	
2	Degenerate	0.75	$f_{7/2} \ p_{3/2}$	38.400 38.400	0.129 0.135	
3	Inverted	0.75	$f_{7/2} \ p_{3/2}$	37.880 38.425	0.349 0.130	
			37 Na + <i>n</i>			
1	Degenerate	0.70	$f_{7/2} \ p_{3/2}$	38.225 38.225	0.539 0.599	
2	Inverted	0.75	$f_{7/2} \ p_{3/2}$	38.400 38.400	0.522 0.271	
3	Inverted	0.75	$f_{7/2} \ p_{3/2}$	37.880 38.425	0.734 0.265	

Configuration mixing and matter radii for ⁴⁰Mg and ³⁹Na

The University of Manchester

MANCHESTER

1824

⁴⁰Mg (s_{2n}) = 0.670 (0.710) MeV M. Wang, *et. al.*, Chinese Physics C **45** (**3**), 030003 (2021).

Matter radius of core ³⁸Mg=3.60 fm S. Watanabe, *et. al.*, PRC **89**, 044610 (2014).

³⁹Na (s_{2n}) = unbound M. Wang, *et. al.*, Chinese Physics C **45** (**3**), 030003 (2021). ³⁹Na (s_{2n}) = bound (Contradicts AME) D. S. Ahn et al., PRL **129**, 212502 (2022).

Matter radius of core ³⁷Na=3.64 fm L. Geng, *et. al.*, NPA **730**, 80 (2004).

The larger change in R_m *w.r.t* core involves wave function which contains significant $(p_{3/2})^2$ (dotted lines) weight, pointing toward the necessity of intruder configurations to sustain halo formation. $(f_{7/2})^2$ (solid lines)

Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

The University of Manchester

MANCHESTER

1824

- Dotted black lines in the figure correspond to the weighted fit of the experimental data points with the standard $R_0 A^{1/3}$ formula.
- The radii of ⁴⁰Mg and ³⁹Na are higher than the standard fitted value.
- This observation implies a likely twoneutron halo structure in the ground state of ⁴⁰Mg and ³⁹Na, and the corresponding melting of the traditional N = 28 shell gap is due to the intrusion of the $p_{3/2}$ orbital.

Reaction cross-sections for ⁴⁰Mg and ³⁹Na : within Glauber reaction theory

The University of Manchester

MANCHESTER

1874

- Experimentally, a very obvious way to determine whether a nucleus is a halo nucleus, is to look for an enhanced reaction cross section. Thus, we examine the total reaction cross section by employing the conventional Glauber theory. *B. Abu-Ibrahim et al., PRC 77, 034607 (2008). W. Horiuchi et al., PRC 75, 044607 (2007).*
- Using this prescription, we predict the σ_R for ⁴⁰Mg and ³⁹Na at different incident energies. The predicted values of σ_R for ⁴⁰Mg and ³⁹Na show significant enhancement with respect to the observed σ_R in the lower-A isotopes for both choices of energy.

Thus, our results provide a clear signal of the 2n-halo structure formation in ^{40}Mg and ^{39}Na and hence melting of the N = 28 shell closure.

- Ozawa *et al.*, Nuclear Physics A **691 (3)**, 599 (2001).
- Kanungo *et al.*, Phys. Rev. C **83**, 021302 (2011).
- Takechi *et al.*, Phys. Rev. C **90**, 061305(R) (2014).
- Jagjit Singh et al., arXiv:2401.05160 [nucl- th] (2024).

- We started with studying melting of N=20 (*JS*, *JC*, *WH*, *LF*, and *AV*, *PRC* 101, 024310 (2020)) for ²⁹F. Our predictions got boost with new measurements (*S. Bagchi et al.*, *PRL* 124, 222504 (2020) and *A. Revel et al.*, *PRL* 124, 152502 (2020)). We updated our calculations with precise calculations along with detailed analysis of electric-dipole response and reaction calculations (*LF*, *JC*, *WH*, *JS*, and *AV*, *Nature: Commun. Phys.* 3, 132 (2020) and *JC*, *JS*, *LF*, *WH*, and *AV*, *PRC* 102, 064627 (2020)).
- Motivated by melting N=20 ends up in formation of Borromean in ²⁹F, by using same prescription we reported first three body calculations for ³⁹Na and ⁴⁰Mg lying on low-Z side of N=28. (*JS*, *JC*, *WH*, *NW*, and *WS* arXiv:2401.05160 [nucl- th] (2024)),
- Our results calls for new precise mass measurements for s_{2n} of three-body systems and the low-lying continuum spectrum of subsystems to better constrain the theoretical models.
- The disappearance of the conventional N=28 shell gap and emergence of the halo leads to significant occupancy of intruder $p_{3/2}$ orbit in the ground state of ³⁹Na and ⁴⁰Mg. Nevertheless, it is imperative to verify this conclusion through experimental measurements of interaction cross sections.

Future Perspectives:

• It is interesting to see how our predictions/results alter with inclusion of core deformation effects.

The University of Manchester

Thanks for kind attention.

Acknowledgements:

J. Casal (Seville) W. Horiuchi (OMU, Osaka) N. R. Walet (Manchester) W. Satula (Warsaw) L. Fortunato (Padova) A. Vitturi (Padova)

- **Halo nuclei (manifestation of nuclear clustering)** exhibit: a *diffuse density distribution*, low one or more valence neutron(s) separation energies (s_n/s_{2n}) , *abnormally large matter radius* and *large interaction cross sections*. P. G. Hansen and B. Jonson, Europhys. Lett. **4**, 409 (1987).
- **Borromean systems (2n-halo):** Corresponding *core+n* subsystems being unbound, the strong correlations between the valence neutrons are key in binding two-neutron halos M. Zhukov *et. al.*, Phys. Rep. 231, 151 (1993). Y. Kikuchi *et al.*, PTEP 2016, 103D03 (2016). Hagino & Sagawa, PRC 72, 044321 (2005). Observed examples: ⁶He, ¹¹Li, and ¹⁴Be , ¹⁷B, ¹⁹B, ²²C and ²⁹F.
- Low-lying spectra of the unbound *core+n* subsystems play an important role in shaping the properties of Borromean nuclei. One of the other salient features of halo nuclei is an *enhancement of the low-lying E1 (electric dipole) strength* into the continuum T. Aumann, EPJA 55, 234 (2019). Experimentally this has been observed via *invariant mass spectroscopy in Coulomb dissociation (CD) experiments*.
- Theoretically three-body (*core+n+n*) models have been found to describe reasonably well these features in *Borromean nuclei*.

Key inputs:

- Information on core+n low-lying spectrum
- Two-neutron separation energy

JS *et al.,, PRC* **101**, 024310 (2020). **JS** *et al., arXiv:2401.05160 [nucl- th] (2024).*

MANCHESTER 1824 Success story of ²⁹F

The University of Manchester

New Experiment confirms ground state resonance of ²⁸F at 0.199(6) MeV (l=1~79%) and Ist excited state resonance around 0.966 MeV (l=2~72%). **Inversion** !! *A. Revel et al., PRL 124, 152502 (2020).*

Total reaction Cross section within Glauber Model

The calculated total reaction cross section using the standard Glauber theory are **1370 mb** if we assume $s_{2n} = 1.44$ MeV, and **1390 mb** if we take the lower limit ($S_{2n} \approx 1$ MeV), which are in good agreement with the observed interaction cross section **1396 ± 28 mb**. *JC*, *JS*, *et. al.*, *PRC 102*, *064627 (2020)*. s_{2n} (²⁹F) =1.443 (436) MeV *PRL*. *109*, *202503 (2012)*.

Matter radius of 29F

The relative increase of matter radii with respect to 27 F core lies in the range 0.20-0.25 fm in the different choices of s_{2n} whereas experimental value is 0.35 (0.08) fm.

JS, *JC*, *WH*, *LF* and *AV*, *PRC* **101**, 024310 (2020).

Mass number A S. Bagchi et al., PRL 124, 222504 (2020).

Inversion occur, when ΔE , associated with filling of 20 neutrons, disappears and one level (or more) of the *pf-shell* (N = 3) gets lower than one (or more) of the levels of the *sd-shell* (N = 2).

The $1f_{7/2}$ orbit is bordered by two magic numbers, i.e., 20 and 28 **20** has a HO origin, whereas the **28** has a SO origin.

T. Otsuka et al., Rev. Mod. Phys. 92, 015002 (2020).

LF, JC, WH, JS et. al., Comm. Physics 3, 132 (2020).