Octupole deformation in neutron-deficient plutonium isotopes

Hamid Ayatollahzadeh

IOP Joint APP, HEPP, and NP Conference University of Liverpool 08.04.24 – 11.04.24

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI LEGNARO

UNIVERSITY OF THE WEST of SCOTLAND

Octupole deformation

The nuclear shape is described by spherical harmonics multiplied by an expansion coefficient (deformation parameter).

$$R(\theta, \phi) = R_0 [1 + \sum_{\lambda, \mu} \alpha_{\lambda, \mu} Y_{\lambda}^{\mu}]$$

Quadrupole-octupole shapes $\beta_2=0.6, \beta_{3\mu}=0.35$

Octupole deformation

134 (j_{15/2}, g_{9/2})

88 (i_{13/2}, f_{7/2})

56 (h_{11/2}, d_{5/2})

34 (g_{9/2}, p_{3/2})

- $\Delta j = \Delta l = 3$
- Reflection-asymmetric nuclei
- Octupole magic numbers: 34, 56, 88, 134

N=Z=56 close to ¹¹²Ba
Z=56 N=88 close to ¹⁴⁶Ba
Z=88 N=134 close to ²²⁴Ra

Spectroscopic features of octupole deformation

Regional understanding

Previous plutonium studies

An experiment by K. Abu Saleem et al. studied the ²³⁶Pu isotope [K. Abu Saleem et al., Phys. Rev. C 70, 024310 (2004)] using the ²³⁷Np(²⁰⁹Bi,²¹⁰Pb) transfer reaction.

0.3

Additional four y-ray transitions identified in ²³⁶Pu adding to established level scheme.

Theoretical predictions

٠

Potential-energy surfaces by Nomura et al. (Phys. Rev. C **103**, 044311 (2021)) for ²³⁴Pu has $\beta_3 \simeq 0$ whereas for ²³²Pu, $\beta_3 \simeq 0.22$.

Multi-nucleon transfer reactions

- Able to probe exotic nuclei past the current experimental limit when using fusion, fragmentation and other methods.
- Combination of MNT reactions with AGATA-PRISMA detector setup allows improved efficiency and selectivity.

Experimental details

$$\frac{112}{50}$$
Sn + $\frac{238}{92}$ U

 $\rightarrow \begin{array}{c} ^{116}_{48}\text{Cd} + \begin{array}{c} ^{234}_{94}\text{Pu} & (\sigma \sim 0.7 \text{ mb}) \end{array} \\ \rightarrow \begin{array}{c} ^{118}_{48}\text{Cd} + \begin{array}{c} ^{232}_{94}\text{Pu} & (\sigma \sim 0.4 \text{ mb}) \end{array} \end{array}$

AGATA (Advanced GAmma Tracking Array)

PRISMA Large Solid Angle Magnetic Spectrometer

AGATA- Advanced Gamma-ray Tracking Array

- New generation of gamma-ray spectrometers.
- Employs the novel technique of gamma-ray tracking to reconstruct events.
- 13 triple clusters.
- 36-fold segmentation.

AGATA - Gamma-ray tracking

- Segmented germanium crystals allows reconstruction of gamma-ray energy.
- Two algorithms are employed to determine correct interaction sequence.
- Negates the requirement for Compton suppression and improves the overall detection efficiency of the apparatus.

Experimental details

$$\frac{112}{50}$$
Sn + $\frac{238}{92}$ U

 $\rightarrow \begin{array}{c} ^{116}_{48}\text{Cd} + \begin{array}{c} ^{234}_{94}\text{Pu} & (\sigma \sim 0.7 \text{ mb}) \end{array} \\ \rightarrow \begin{array}{c} ^{118}_{48}\text{Cd} + \begin{array}{c} ^{232}_{94}\text{Pu} & (\sigma \sim 0.4 \text{ mb}) \end{array} \end{array}$

AGATA (Advanced GAmma Tracking Array)

PRISMA Large Solid Angle Magnetic Spectrometer

PRISMA Magnetic Spectrometer

MCP

Ionisation Chamber

PRISMA - Z identification

PRISMA - q selection

Charge state (q) gates applied to each Z gated distribution

PRISMA - A/q calibration

Before Aberrational corrections

units] A/q · 100 [arb. units] [arb. A/q 260[⊢] -60 -20-20-60 Y_{MCP} [mm] Y_{MCP} [mm] A/q · 100 [arb.units] [arb. units] A/q · 100 X_{FP} [mm] X_{FP} [mm]

After aberrational corrections

PRISMA - Mass calibration

PRISMA - Mass distributions

Mass
resolutions
$$Z = 50 \rightarrow \frac{1}{250}$$
$$Z = 49 \rightarrow \frac{1}{231}$$
$$Z = 48 \rightarrow \frac{1}{229}$$

Mass assignments are gated on to look at coincidence gamma-ray spectra either using 2D gate or rounding to nearest integer.

Preliminary Analysis results – AGATA

AGATA-PRISMA coincidence spectra Analysis ongoing

With thanks to all collaborators:

H. Ayatollahzadeh ^{1, 2}, J. M. Keatings ^{1, 2}, J. F. Smith ^{1, 2}, D. Mengoni ³, P. Aguilera ^{3, 4}, G. Andreetta ^{3, 5}, F. Angelini ^{3, 4}, M. Balogh ⁴, J. Benito ^{3, 4}, M. A. Bentley ⁶, A. J. Boston ⁷, H. C. Boston ⁷, S. Bottoni ^{8, 9}, M. Bowry ^{1, 2}, P. A. Butler ⁷, D. Brugnara ⁴, S. Carollo ³, G. Corbari ⁸, L. Corradi ⁴, R. Escudeiro ⁵, P. T. Greenlees ¹⁰, R. Chapman ^{1, 2}, D. M. Cullen ^{1, 2}, G. de Angelis ⁴, A. Ertoprak ⁴, C. Everett ⁷, L. P. Gaffney ⁷, F. Galtarossa ⁵, A. Goasduff ⁴, B. Góngora Servin ^{4, 11}, A. Gottardo ⁴, A. Gozzelino ⁴, J. Hackett ⁷, S. D. Hart ¹², F. Holloway ⁷, P. M. Jones ¹², S. Jongile ¹², D. Judson ⁷, M. Labiche ¹³, M. S. R. Laskar ⁹, K. L. Malatji ¹², A. McCarter ⁷, G. Montagnoli ³, N. Marchini ¹⁴, B. S. Nara Singh ^{1, 2}, D. R. Napoli ⁴, R. Nicolás del Álamo ^{3, 5}, D. O'Donnell ^{1, 2}, J. Pellumaj ⁴, R. Pérez ⁴, S. Pigliapoco ³, E. Pilotto ⁵, M. Polettini ³, F. Recchia ³, K. Rezynkina ⁴, E. Rintoul ⁷, M. Rocchini ¹⁴, M. Sedlak ⁴, M. Siciliano ¹⁵, A. Stefanini ⁴, D. Stramaccioni ^{3, 4}, C. Sullivan ⁷, J. J. Valliente-Dobon ⁴, F. van Niekerk ¹², L. Zago ^{3, 4}, and I. Zanon ⁴.

 ¹School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley, PA 1 2BE, United Kingdom ²Scottish Universities Physics Alliance (SUPA)
 ³Dipartimento di Fisica e Astronomia dell'Universitá di Padova, I-35131 Padova, Italy ⁴INFN, Laboratori Nazionalidi Legnaro, I-35020 Legnaro, Padova, Italy ⁵Istituto Nazionale di Fisica Nucleare, Sezionedi Padova, I-35131 Padova, Italy ⁵Istituto Nazionale di Fisica Nucleare, Sezionedi Padova, I-35131 Padova, Italy ⁶School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom ⁷Oliver Lodge Laboratory, University of Liverpool, Liverpool, L697ZE, United Kingdom ⁸Dipartimento di Fisica, Universitá degli Studi di Milano, 20133 Milano, Italy ⁹INFN Sezione di Milano, 20133, Milano, Italy ¹⁰University of Jyvaskyla, Department of Physics, P.O. Box 35, FIN-40014 University of Jyvaskyla, Finland ¹¹Dipartimento di Fisicae Scienze della Terra, Università di Ferrara, Ferrara, Italy ¹²iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa ¹³STFC Daresbury Laboratory, Daresbury, Warrington WA44AD, United Kingdom ¹⁴INFN Sezione di Firenze, IT-50019 Firenze, Italy ¹⁵Physics Division, Argonne National Laboratory, Argonne, USA

Spectroscopic features of octupole deformation

Angular momentum increasing

PRISMA – Trajectory reconstruction

Bad optical parameters

Good optical parameters

Forward tracking vs. backtracking

