

Lifetime measurements in ⁵³Ca

S. Chen

on behalf of the HiCARI collaboration and the RIBF-170 collaboration

University of York

Liverpool, 10th April 2024

Shell structures and nuclear forces

Maria Goeppert-Mayer, Phys. Rev. **75**, 1969 (1949) O. Haxel, Phys. Rev. **75**, 1766 (1949)

Shell structures and nuclear forces

- Shell structure and magic numbers were the cornerstones of the shell model for many decades
- Experiments on exotic nuclei found magic numbers are not immutable throughout the nuclear chart
- Shell structure is now recognized as local concept

J. Dobaczewski et al., Prog. Part. Nucl. Phys. 59 (2007) 432-445

N = 32,34 shell closure in Ca isotopes

D. Steppenbeck et al., Nature 502,207-10 (2013)

50

20Ca

⁵⁴Ca

⁵²Ca

N = 32 shell closure in ⁵²Ca

D. Steppenbeck et al., Nature 502,207-10 (2013)

- Absence of strong $\pi f_{7/2} \nu f_{5/2}$ attraction make N = 32,34 new magic number in calcium
- Experimental evidences for N = 32 magic
 Large E(2⁺₁)
 - Mass measurement: large empirical two-neutron shell gap

A. Huck et al., Phys. Rev. C 31,2226-2237 (1985)

N = 34 shell closure in ⁵⁴Ca

D. Steppenbeck et al., Nature 502,207-10 (2013)

- Absence of strong $\pi f_{7/2} \nu f_{5/2}$ attraction make N = 32,34 new magic number in calcium
- Experimental evidences for *N* = 34 magic
 - $E(2_1^+)$: first evidence of magicity
 - Mass measurement: *N* = 34 shell gap similar size with *N* = 32 shell gap

D. Steppenbeck et al., Nature 502,207-10 (2013)

S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)

vp _{3/2}

vf_{7/2}

28

⁵³Ca (Z=20)

 $\pi p_{3/2}$

 $\pi f_{7/2}$

E_x = 2220 keV via β-decay, F. Perrot *et al.* PRC **74**,014313 (2006)

S. Chen et al., PRL 123,142501 (2019)

State	Energy (keV)	GXPF1Bs	NNLOsat	NN+3N (Inl)
3/2-	2220(13)	2061	2635	2611
5/2-	1738(17)	1934	1950	2590

Lifetime measurements:

vf_{5/2}

vp _{1/2}

vp_{3/2}

vf_{7/2}

 \times

28

⁵³Ca (Z=20)

 $\pi p_{3/2}$

 $\pi f_{7/2}$

- E2 transition probability
- Benchmarks to test different theoretical descriptions beyond excitation energies

1753 keV (5/2-)

53Ca (Z=20)

Lifetime measurement method

- Detect prompt gamma rays from fast moving $(\sim 0.5c)$ particles
- Doppler correction for prompt gamma

 $E_{\gamma 0} = E_{\gamma} \frac{1 - \beta \cos\theta}{\sqrt{1 - \beta^2}}$

- Finite excitation state lifetime lead to θ and β distribution different from zero lifetime
 - ==> asymmetric peak shape after Doppler-correction
- Peak shape analysis to extract excitation state lifetime

16

- Detect prompt gamma rays from fast moving (~0.5*c*) particles
- Doppler correction for prompt gamma

 $E_{\gamma 0} = E_{\gamma} \frac{1 - \beta \cos\theta}{\sqrt{1 - \beta^2}}$

- Finite excitation state lifetime lead to θ and β distribution different from zero lifetime
 - ==> asymmetric peak shape after Doppler-correction
- Peak shape analysis to extract excitation state lifetime
 - ==> complicated lifetime responses, need compare with detailed simulations

UNIVERSI

Figure: Doppler broadening as a function of gamma-emission angle (P. Doornenbal, PTEP **2012**, 03C004)

proton-rich Ca setting

18

17

16

15L 1.8

1.85

1.9

1.95

2

A/Q

2.05

2.1

2.15

 10^{2}

10

2.2

Experiment Setup - HiCARI

- High-resolution Cluster Array at the RIBF (RIKEN Accel. Prog., (2021), K. Wimmer, et. al.)
- Hybrid HPGe array:
 - 6 x Miniball cluster (6 segments)
 - 4 x SuperClover cluster (4 segments)
 - 1 x Gretina Quad cluster (position sensitive)
 - 1 x Gretina P3 cluster (position sensitive)

Figure: HiCARI array

Benchmark – ³⁶Ar from ³⁷K -1p

MiniBall

Clover

tracking

³⁶Ar low-lying excitation states from NNDC

- Spectra of CH2 target have worse energy resolutions, due to large $\boldsymbol{\beta}$ uncertainty
- ³⁶Ar low-lying excitation states: known energy and lifetime

==> Benchmark Geant4 simulations

Spectra of ³⁷K(CH2,X)³⁶Ar

2000

Energy (keV)

2500

3000

4000

- only statistic uncertainties are considered
- weighted by $1/\sigma^2$
- deduced B(E2,5/2 $\rightarrow 1/2$) = $3.2_{-1.0}^{+2.8} e^{2} fm^{4}$

 χ^2 surface {tracking}

Theoretical calculations:

	Energy / keV	B(E2) / e ² fm ⁴	Halflife_E _{exp} / ps
UFP-CA	1767	5.11	7.0
VS-IMSRG	2116	0.785	45

- Shell Model calculations using UFP-CA interaction ٠ (by Alex Brown)
- Valence-space in-medium similarity renormalization group (VS-IMSRG) using chiral effective field theory (EFT) interaction (by Jason Holt, 2019)

Summary

- Performed in-beam gamma-ray spectroscopy measurement in neutron-rich Ca isotopes with a Hybrid HPGe array at RIBF
- Benchmarked the simulation with ³⁶Ar spectra, the obtained gamma-ray response functions well reproduced the peak shapes
- Analysed the ⁵³Ca spectra with detailed simulations, the lifetime of the 5/2⁻ state is extracted to be 11(5) ps, leading to a $B(E2,5/2^{-}\rightarrow 1/2^{-}) = 3.2_{-1,0}^{+2.8} e^{2}fm^{4}$
- Experimental results are compared with Shell-Model calculations using UFP-CA interaction, and VS-IMSRG approach using EFT interactions with 2N and 3N forces

Collaborations

University of York: S. Chen, R. Crane, W. Marshall, R. Taniuchi, M. Petri, S. Paschalis, M. Bentley, L. Tetley

RIKEN: P. Doornenbal, H. Baba, F. Browne, B. Mauss, B. Moon, H. Sakurai, D. Suzuki

大阪大学 核物理研究センター

RCNP

Universität zu Köln: C. Fransen, H. Hess, P. Reiter, S. Thiel

RCNP: N. Aoi, E. Ideguchi, S. Iwazaki, A. Kohda, Y. Yamamoto

CSIC

KOREA

LBNL: H. Crawford, C. Campbell, A. Macchiavelli, P. Fallon, M. Cromaz, R. Clark, A. Frotscher

CSIC: K. Wimmer

Korea University: J. Kim

東京大学 University of Tokyo: T. Koiwai

SURREY University of Surrey: T. Parry

KU LEUVEN **KU Leuven**: H. de Witte

TRIUMF TRIUMF: J. Holt

Thank you for your attention

MICHIGAN STATE MSU: B. A. Brown

Backup

BigRIPS Separator

- $B\rho$ - ΔE - $B\rho$ separation
- Large acceptance
 - $\Delta\theta = \pm 40 \text{ mrad}$
 - $\Delta \varphi = \pm 50 \text{ mrad}$
 - $\circ \Delta p/p = \pm 3\%$
- Event-by-event $B\rho$ -TOF- ΔE particle identification

UNIVERSI

 ${}^{30}\text{Si} \rightarrow {}^{24}\text{O}$: absence of strong $\pi 0d_{_{5/2}} - \nu 0d_{_{3/2}}$ attraction

 \Rightarrow N = 16 new magic number in oxygen

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

proton-rich Ca setting

ZeroDegree PID

Doppler-correction

P. Doornenbal, PTEP **2012**, 03C004

• Doppler correction for prompt gamma

 $\frac{E_{\gamma}}{E_{\gamma 0}} = \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \vartheta_{\gamma}}$

• Doppler-corrected gamma energy resolution:

$$\left(\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}\right)^2 = \left(\frac{\beta \sin \vartheta_{\gamma}}{1 - \beta \cos \vartheta_{\gamma}}\right)^2 \times (\Delta \vartheta_{\gamma})^2 + \left(\frac{\beta - \cos \vartheta_{\gamma}}{(1 - \beta^2)(1 - \beta \cos \vartheta_{\gamma})}\right)^2 \times (\Delta \beta)^2 + \left(\frac{\Delta E_{\text{intr}}}{E_{\gamma}}\right)^2.$$
Fig. 1. Doppler broa

Fig. 1. Doppler broadening due to $\Delta\beta$, $\Delta\vartheta_{\gamma}$, and ΔE_{intr} as a function of the γ -ray emission (detector) angle ϑ_{γ} . Three different velocities were assumed. The upper panel displays only the velocity uncertainty effect for $\Delta\beta/\beta = 0.1$, while the middle panel displays the broadening due to a detector opening angle of $\Delta\vartheta_{\gamma} = 122$ mrad. In the bottom panel, the sum effect including an intrinsic energy resolution of 6% at 1.33 MeV is displayed. The calculations were performed for a 1 MeV γ -ray energy assuming a square-root dependence of the intrinsic energy resolution.

E_x = 2220 keV via β-decay, F. Perrot *et al.* PRC **74**,014313 (2006)

 ^{53}Ca populated via $^{54}Ca \rightarrow ^{53}Ca$

1753 keV (5/2-)

⁵³Ca (Z=20)

Benchmark – ³⁶Ar from ³⁷K -1p

³⁶Ar low-lying excitation states from NNDC

- Fix $4^+ \rightarrow 2^+$ and $3^- \rightarrow 2^+$ energies and lifetimes
- Study $2^+ \rightarrow 0^+$ energy and tracking detectors position resolution
- Red markers: 1- σ region (min-chi²+1)
- MinChi₂ at
 - 1967keV, **3.3mm** (P3) 1969keV, **3.3mm** (Quad)

1

2

Position resolution Sigma (mm)

####