Lifetime measurements in ${ }^{53} \mathbf{C a}$

S. Chen
on behalf of the HiCARI collaboration and the RIBF-170 collaboration

University of York

Liverpool, $10^{\text {th }}$ April 2024

Shell structures and nuclear forces

Maria Goeppert-Mayer, Phys. Rev. 75, 1969 (1949) O. Haxel, Phys. Rev. 75, 1766 (1949)

Shell structures and nuclear forces

- Shell structure and magic numbers were the cornerstones of the shell model for many decades
- Experiments on exotic nuclei found magic numbers are not immutable throughout the nuclear chart
- Shell structure is now recognized as local concept
J. Dobaczewski et al., Prog. Part. Nucl. Phys. 59 (2007) 432-445

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel

${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction $\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction $\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)
T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive
 when they are parallel
${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction $\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)
T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel

${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction $\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)
T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel
${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction
$\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel

${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction $\Rightarrow N=16$ new magic number in oxygen

Shell structures and nuclear forces

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Tensor force: attractive when the intrinsic spins of neutron and proton are anti-parallel and repulsive when they are parallel
${ }^{30} \mathrm{Si} \rightarrow{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction
$\Rightarrow N=16$ new magic number in oxygen

$N=32,34$ shell closure in Ca isotopes

D. Steppenbeck et al., Nature 502,207-10 (2013)

${ }^{60} \mathrm{Fe}(Z=26)$

b

${ }^{58} \mathrm{Cr}(Z=24)$

- Absence of strong $\pi f_{7 / 2}-v f_{5 / 2}$ attraction make $N=32,34$ new magic number in calcium

(sub-)shell closure at $N=16,20,28,32,34$

$N=32$ shell closure in ${ }^{52} \mathrm{Ca}$

D. Steppenbeck et al., Nature 502,207-10 (2013)

${ }^{60} \mathrm{Fe}(Z=26)$
b

${ }^{58} \mathrm{Cr}(Z=24)$

- Absence of strong $\pi f_{7 / 2}-v f_{5 / 2}$ attraction make $N=32,34$ new magic number in calcium
- Experimental evidences for $\boldsymbol{N}=\mathbf{3 2}$ magic
- Large $\mathrm{E}\left(2^{+} \frac{1}{1}\right)$
- Mass measurement: large empirical two-neutron shell gap
A. Huck et al., Phys. Rev. C 31,2226-2237 (1985)

F. Wienholtz et al., Nature 498, 346-349 (2013)

$N=34$ shell closure in ${ }^{54} \mathbf{C a}$

D. Steppenbeck et al., Nature 502,207-10 (2013)

${ }^{60} \mathrm{Fe}(Z=26)$
b

${ }^{58} \mathrm{Cr}(Z=24)$

- Absence of strong $\pi f_{7 / 2}-v f_{5 / 2}$ attraction make $N=32,34$ new magic number in calcium
- Experimental evidences for $\boldsymbol{N}=34$ magic
- $E\left(2^{+}\right)$; first evidence of magicity
- Mass measurement: $N=34$ shell gap similar size with $N=32$ shell gap
D. Steppenbeck et al., Nature 502,207-10 (2013)

S. Michimasa et al., Phys. Rev. Lett. 121, 022506 (2018)

Excitation of ${ }^{53} \mathbf{C a}$

D. Steppenbeck et al., Nature 502,207-10 (2013)

g.s. (1/2-)

$\pi p_{1 / 2}$	34
$\overline{\pi f_{5 / 2}}$	32
$\overline{\pi p_{3 / 2}}$	
$\underline{\pi f_{7 / 2}}$	28

${ }^{53} \mathrm{Ca}(\mathrm{Z}=20)$

2220 keV (3/2-)

${ }^{53} \mathrm{Ca}(\mathrm{Z}=20)$
$E_{x}=2220 \mathrm{keV}$ via β-decay,
F. Perrot et al. PRC 74,014313 (2006)
S. Chen et al., PRL 123,142501 (2019)

State	Energy (keV)	GXPF1Bs	NNLOsat	NN+3N (Inl)
$3 / 2-$	$2220(13)$	2061	2635	2611
$5 / 2-$	$1738(17)$	1934	1950	2590

Lifetime measurements:

- E2 transition probability
- Benchmarks to test different theoretical descriptions beyond excitation energies

1753 keV (5/2-)

Lifetime measurement method

- Detect prompt gamma rays from fast moving ($\sim 0.5 c$) particles
- Doppler correction for prompt gamma

$$
E_{\gamma \theta}=E_{\gamma} \frac{1-\beta \cos \theta}{\sqrt{1-\beta^{2}}}
$$

- Finite excitation state lifetime lead to θ and β distribution different from zero lifetime

$$
=>\text { asymmetric peak shape after }
$$

Doppler-correction

- Peak shape analysis to extract excitation state lifetime

Figure: Schematic diagram of lifetime measurement method (Thesis, S. Heil, 2019)

Lifetime measurement method

- Detect prompt gamma rays from fast moving ($\sim 0.5 c$) particles
- Doppler correction for prompt gamma

$$
E_{\gamma \theta}=E_{\gamma} \frac{1-\beta \cos \theta}{\sqrt{1-\beta^{2}}}
$$

- Finite excitation state lifetime lead to θ and β distribution different from zero lifetime

$$
==>\text { asymmetric peak shape after }
$$

Doppler-correction

- Peak shape analysis to extract excitation state lifetime
$==>$ complicated lifetime responses, need compare with detailed simulations

Figure: Doppler broadening as a function of gamma-emission angle (P. Doornenbal, PTEP 2012, 03C004)

Experiment Setup at RIBF

arget

Particle Identification

Experiment Setup - HiCARI

- High-resolution Cluster Array at the RIBF (RIKEN Accel. Prog., (2021), K. Wimmer, et. al.)
- Hybrid HPGe array:
- $6 \times$ Miniball cluster (6 segments)
- 4 x SuperClover cluster (4 segments)
- 1 x Gretina Quad cluster (position sensitive)
- $1 \times$ Gretina P3 cluster (position sensitive)

Figure: HiCARI array

Benchmark - ${ }^{36} \mathrm{Ar}$ from ${ }^{37} \mathrm{~K}-1 p$

${ }^{36} \mathbf{A r}$ low-lying excitation states from NNDC

- Spectra of CH2 target have worse energy resolutions, due to large β uncertainty
- ${ }^{36} \mathrm{Ar}$ low-lying excitation states: known energy and lifetime
$==>$ Benchmark Geant4 simulations

Figure: Doppler-corrected gamma-ray energy spectra

Benchmark - ${ }^{36} \mathrm{Ar}$ from ${ }^{37} \mathrm{~K}-1 p$

${ }^{36}$ Ar low-lying excitation states from NNDC

- Fitting function:

Geant4 simulations + double-expo background

${ }^{53}$ Ca from ${ }^{55} \mathrm{Sc}-1 p 1 n$

Previous measurement:
Gamma-ray spectra measured with $\mathrm{NaI}(\mathrm{TI})$ detectors
D. Steppenbeck et al., Nature 502,207-10 (2013)

Figure: Doppler-corrected gamma-ray energy spectra

${ }^{53}$ Ca from ${ }^{55}$ Sc - $1 p 1$ n

${ }^{53} \mathrm{Ca}$ from ${ }^{55} \mathrm{Sc}-1 p 1 n$

Preliminary results:

	Energy $/ \mathrm{keV}$	Halflife /ps
Miniball	$1752(8)$	$15(8)$
Clover	$1730(6)$	$8(8)$
tracking	$1744(8)$	$11(8)$
weighted	$1740(4)$	$11(5)$

- only statistic uncertainties are considered
- weighted by $1 / \sigma^{2}$
- deduced $\mathrm{B}\left(\mathrm{E} 2,5 / 2^{-} \rightarrow 1 / 2^{-}\right)=3.2_{-1.0}{ }^{+2.8} \mathrm{e}^{2} \mathrm{fm}^{4}$

Theoretical calculations:

	Energy / keV	B(E2) / $\mathrm{e}^{2} \mathrm{fm}^{4}$	Halflife_E $\mathrm{E}_{\text {exp }} / \mathrm{ps}$
UFP-CA	1767	5.11	7.0
VS-IMSRG	2116	0.785	45

- Shell Model calculations using UFP-CA interaction (by Alex Brown)
- Valence-space in-medium similarity renormalization group (VS-IMSRG) using chiral effective field theory (EFT) interaction (by Jason Holt, 2019)

Summary

- Performed in-beam gamma-ray spectroscopy measurement in neutron-rich Ca isotopes with a Hybrid HPGe array at RIBF
- Benchmarked the simulation with ${ }^{36} \mathrm{Ar}$ spectra, the obtained gamma-ray response functions well reproduced the peak shapes
- Analysed the ${ }^{53} \mathrm{Ca}$ spectra with detailed simulations, the lifetime of the $5 / 2$ state is extracted to be $11(5) \mathrm{ps}$, leading to a $\mathrm{B}\left(\mathrm{E} 2,5 / 2^{-} \rightarrow 1 / 2^{-}\right)=3.2_{-1.0}{ }^{+2.8} \mathrm{e}^{2} \mathrm{fm}^{4}$
- Experimental results are compared with Shell-Model calculations using UFP-CA interaction, and VS-IMSRG approach using EFT interactions with 2 N and 3 N forces

Collaborations

university University of York：S．Chen，R．Crane，W．Marshall，R．Taniuchi，M．Petri， S．Paschalis，M．Bentley，L．Tetley

RIKEN：P．Doornenbal，H．Baba，F．Browne，B．Mauss，B．Moon，H．Sakurai， D．Suzuki
RCNP
RCNP：N．Aoi，E．Ideguchi，S．Iwazaki，A．Kohda，Y．Yamamoto
universität zu KÖLN
$\hat{*}$｜A berkeley lab
CSIC
KOREA
UNIVERSITY
東京大学
universityof
SURREY
University of Surrey：T．Parry
KULEUVEN KU Leuven：H．de Witte
®TRIUMF TRIUMF：J．Holt
Thank you for your attention
$\int \frac{\text { MICHIGAN STATE }}{u N \text { IVER S I T Y }}$

MSU：B．A．Brown

Backup

BigRIPS Separator

Big RIKEN Projectile Fragment Separator

- Bp- $\Delta E-B \rho$ separation
- Large acceptance

$$
\begin{array}{ll}
0 & \Delta \theta= \pm 40 \mathrm{mrad} \\
\text { - } & \Delta \varphi= \pm 50 \mathrm{mrad} \\
\text { - } & \Delta \mathrm{p} / \mathrm{p}= \pm 3 \%
\end{array}
$$

- Event-by-event $B \rho-T O F-\Delta E$ particle identification

Shell structures and nuclear forces

- spin-orbital splitting:
$E\left(j_{>}=l+s\right)<E\left(j_{c}=I-s\right)$
- conventional magic numbers:
$2,8,20,28,50, \ldots$

(b)

Tensor force

T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)
${ }^{30} \mathrm{Si}_{\rightarrow}{ }^{24} \mathrm{O}$: absence of strong $\pi 0 d_{5 / 2}-v 0 d_{3 / 2}$ attraction
$\Rightarrow N=16$ new magic number in oxygen

T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)

Shell structures and nuclear forces

Woods-Saxon potential	with Spin-Orbital (L-S) force
$4 \hbar \omega-0 g$	
	(10) $[50]$ (2) $[40]$ (6) $[38]$ (4) $[32]$ (8) $[28]$
$1 \hbar \omega-0 p-=:-0 p_{1 / 2}$	$\varlimsup^{\text {(2) }} \text { (4) }[8]$
$0 \hbar \omega$ - $0 s$ - $-\cdots-0 s_{1 / 2}$	- (2) [2]

- spin-orbital splitting:
$E(j=1+s)<E\left(j_{<}=l-s\right)$
- conventional magic numbers:
$2,8,20,28,50, \ldots$

(sub-)shell closure at $N=16,20,28,32,34$

Particle Identification

Doppler-correction

P. Doornenbal, PTEP 2012, 03C004

- Doppler correction for prompt gamma

$$
\frac{E_{\gamma}}{E_{\gamma 0}}=\frac{\sqrt{1-\beta^{2}}}{1-\beta \cos \vartheta_{\gamma}}
$$

- Doppler-corrected gamma energy resolution:

$$
\begin{aligned}
\left(\frac{\Delta E_{\gamma 0}}{E_{\gamma 0}}\right)^{2}= & \left(\frac{\beta \sin \vartheta_{\gamma}}{1-\beta \cos \vartheta_{\gamma}}\right)^{2} \times\left(\Delta \vartheta_{\gamma}\right)^{2}+\left(\frac{\beta-\cos \vartheta_{\gamma}}{\left(1-\beta^{2}\right)\left(1-\beta \cos \vartheta_{\gamma}\right)}\right)^{2} \times(\Delta \beta)^{2} \\
& +\left(\frac{\Delta E_{\text {int }}}{E_{\gamma}}\right)^{2} .
\end{aligned}
$$

Fig. 1. Doppler broadening due to $\Delta \beta, \Delta \vartheta_{\gamma}$, and $\Delta E_{\text {intr }}$ as a function of the γ-ray emission (detector) angle ϑ_{γ}. Three different velocities were assumed. The upper panel displays only the velocity uncertainty effect for $\Delta \beta / \beta=0.1$, while the middle panel displays the broadening due to a detector opening angle of $\Delta \vartheta_{\gamma}=122 \mathrm{mrad}$. In the bottom panel, the sum effect including an intrinsic energy resolution of 6% at 1.33 MeV is displayed. The calculations were performed for a $1 \mathrm{MeV} \gamma$-ray energy assuming a square-root dependence of the intrinsic energy resolution.

Excitation of ${ }^{53} \mathbf{C a}$

S. Chen et al., Phys. Rev. Lett. 123,142501 (2019)

$E_{x}=2220 \mathrm{keV}$ via β-decay,
F. Perrot et al. PRC 74,014313 (2006)
${ }^{53} \mathrm{Ca}$ populated via ${ }^{54} \mathrm{Ca} \rightarrow{ }^{53} \mathrm{Ca}$
g.s. (1/2-)

$\underline{\pi p_{1 / 2}}$	34
$\overline{\pi f_{5 / 2}}$	32
$\overline{\pi p_{3 / 2}}$	
$\pi f_{7 / 2}$	28

${ }^{53} \mathrm{Ca}(\mathrm{Z}=20)$

2220 keV (3/2-)

${ }^{53} \mathrm{Ca}(\mathrm{Z}=20)$

1753 keV (5/2-)

${ }^{53} \mathrm{Ca}(\mathrm{Z}=20)$

Benchmark - ${ }^{36} \mathrm{Ar}$ from ${ }^{37} \mathrm{~K}-1 p$

${ }^{36}$ Ar low-lying excitation states from NNDC

- Fix $4^{+} \rightarrow 2^{+}$and $3 \rightarrow 2^{+}$energies and lifetimes
- Study $2^{+} \rightarrow 0^{+}$energy and tracking detectors position resolution
- Red markers: $1-\sigma$ region $\left(\right.$ min-chi $\left.{ }^{2}+1\right)$
- MinChi2 at

$$
\begin{aligned}
& 1967 \mathrm{keV}, 3.3 \mathrm{~mm} \text { (P3) } \\
& 1969 \mathrm{keV}, 3.3 \mathrm{~mm} \text { (Quad) }
\end{aligned}
$$

chi2 P3

Benchmark - ${ }^{36} \mathrm{Ar}$ from ${ }^{37} \mathrm{~K}-1 p$

${ }^{36}$ Ar low-lying excitation states from NNDC

- Fix $4^{+} \rightarrow 2^{+}$and $3 \rightarrow 2^{+}$energies and lifetimes
- Study $2^{+} \rightarrow 0^{+}$energy and lifetime
- Red markers: 1- σ region (min-chi ${ }^{2}+1$)

χ^{2} surface \{Clover\}

halflife (ps)

