

Jorge Romero

University of Liverpool

Joint APP, HEPP and NP Conference - Liverpool 2024

Contents

1 Motivation

2 Facility

3 Experiments

4 Outlook

Photo: Arthur Jaries

Motivation

Motivation

N=Z line/ The region of proton rich isotopes close to the N=Z line is a Region of Interest for MARA-LEB. 52

Joint APP, HEPP and NP Conference - Liverpool 2024

Joint APP, HEPP and NP Conference - Liverpool 2024

Testing Theory

$A \sim 80$ Region

- Rich variety of shapes
 - ⁸⁰Zr predicted to have up to 5 different shapes
- Shell effects really sensitive to the addition or removal of a single nucleon

Joint APP, HEPP and NP Conference - Liverpool 2024

36

Joint APP, HEPP and NP Conference - Liverpool 2024

Tin Isotopes

Joint APP, HEPP and NP Conference - Liverpool 2024

Superallowed α Decay

Region from 104 Te to 112 Ba

- Enhanced p-n interactions result in a large α -particle pre-formation factor
- \triangleright "Superallowed" α decay
- \blacktriangleright Lightest α -decaying nuclei
 - ▶ $^{104}\text{Te} \rightarrow ^{100}\text{Sn only}$ one of two α decays into a double magic

Joint APP, HEPP and NP Conference - Liverpool 2024

36

Facility

MARA-LEB

The MARA Low Energy Branch (MARA-LEB) will combine several separation techniques to purify beams of exotic ions produced at MARA and perform total spectroscopy of nuclei.

It is currently under initial construction and testing at the Accelerator Laboratory in Jyväskylä, Finland.

Joint APP, HEPP and NP Conference - Liverpool 2024

The Mass Analysing Recoil Apparatus (MARA) is a $Q^3D_ED_M$ separator with a mass resolution of 250, mainly used for symmetric fusion-evaporation reactions.

J. Uusitalo, et al. Acta Phys. Polonica B 50 (2019) 319.

Joint APP, HEPP and NP Conference - Liverpool 2024

The combination of electrostatic and magnetic fields provides mass-over-charge selectivity. An isobaric chain is selected for.

Recoils produced at MARA are stopped and neutralised in a small-volume buffer gas cell. Typical buffer gases are helium and argon.

Neutralised recoils can be re-ionised via in-gas-cell laser ionisation. The gas is flushed out of the gas cell through a nozzle.

Joint APP, HEPP and NP Conference - Liverpool 2024

Gas Cell Extraction Time

Extraction times for A=219 recoils have been measured at 125 ms and 370 ms for helium and argon, respectively.

(iv)

Joint APP, HEPP and NP Conference - Liverpool 2024

Gas Cell Extraction Time

Extraction times for A=219 recoils have been measured at 125 ms and 370 ms for helium and argon, respectively.

(iv)

Joint APP, HEPP and NP Conference - Liverpool 2024

The nozzle produces a supersonic jet, so in-gas-jet laser ionisation and spectroscopy can also be performed.

Resonant Laser Ionisation

Because the atomic levels are element-dependant, a multi-step resonant ionisation scheme can serve as a fingerprint to select in Z.

F

Resonant Laser Ionisation

Combining the mass selectivity of MARA and the element selectivity of resonant laser ionisation allows for clean isotopic selection.

Transport and Separation

lons are transported and accelerated to 30 kV via the use of Radio-Frequency Quadrupole ion guides and other forms of ion optics. Selected ions are further mass separated by a dipole magnet and an electrostatic deflector.

Transport and Separation

Ions are transported and accelerated to 30 kV via the use of Radio-Frequency Quadrupole ion guides and other forms of ion optics. Selected ions are further mass separated by a dipole magnet and an electrostatic deflector.

Finally, the purified recoil beam arrives at a detector station that is variable to adapt to individual experiment requirements.

Funding from FIRI has been granted for a detector station (K. Auranen).

Joint APP, HEPP and NP Conference - Liverpool 2024

A mass measurement setup is also planned for future phases, with a cooler-buncher and an MR-TOF-MS based on the IGISOL design.

3

Experiments

Actinide Region

Experiment JM20 was carried out in the Accelerator Laboratory of the University of Jyväskylä in November 2021.

Actinide Region

Experiment JM20 was carried out in the Accelerator Laboratory of the University of Jyväskylä in November 2021.

Its main objective was to study Quasi-Fission.

Actinide Region

Experiment JM20 was carried out in the Accelerator Laboratory of the University of Jyväskylä in November 2021.

Its main objective was to study Quasi-Fission.

QF may be an alternate production method for actinides, which can be used to perform experiments in MARA-LEB.

Joint APP, HEPP and NP Conference - Liverpool 2024

Alpha decays are identified by their energy and timing.

Alpha decays are identified by their energy and timing.

Experimental Prospects

- Actinides produced, opening up a new region of interest for MARA-LEB.
- Cross-sections are compatible with laser spectroscopy.

Experimental Prospects

- Actinides produced, opening up a new region of interest for MARA-LEB.
- Cross-sections are compatible with laser spectroscopy.

Experimental Prospects

- Actinides produced, opening up a new region of interest for MARA-LEB.
- Cross-sections are compatible with laser spectroscopy.

Long-Term Prospects

- Recent funding secured for infrastructure funding.
- New regions of interest have been proposed by collaborators.
 - Strong UK presence with collaborations with Liverpool, Manchester and STFC.
 - Close colaboration with S³-LEB at Ganil.
- RITU-LEB for the study of Super-Heavies.

Thank you! Kiitos!

Joint APP, HEPP and NP Conference - Liverpool 2024

Backup - JYFL-ACCLAB

Joint APP, HEPP and NP Conference - Liverpool 2024

Joint APP, HEPP and NP Conference - Liverpool 2024

Backup - Gas Flow

The gas cell design is informed by Comsol simulations to optimise the laminarity of the gas flow.

A honeycomb structure is present before the stopping volume to straighten the gas flow.

A. Zadvornaya, J. Romero, et al. Nucl. Instrum. Meth. B 539 (2023) 33.

Joint APP, HEPP and NP Conference - Liverpool 2024

The gas cell has been tested offline at IGISOL, obtaining ion survival and transport efficiencies of up to 12% for an $^{223}\rm{Ra}$ needle source.

Backup - Extraction

The gas cell has been tested offline at IGISOL, obtaining ion survival and transport efficiencies of up to 12% for an $^{223}\rm{Ra}$ needle source.

A. Zadvornaya, J. Romero, et al. Nucl. Instrum. Meth. B 539 (2023) 33.

Joint APP, HEPP and NP Conference - Liverpool 2024

Backup - Extraction

By applying a pulsing voltage to the needle source, extraction time profiles can be obtained for ²¹⁹Rn and gas impurities.

- \blacktriangleright t_{He} \approx 125 ms
- \blacktriangleright t_{Ar} \approx 370 ms
- The extraction time ratio:

 $t_{Ar}/t_{He} = 2.94(2)$ is close to the estimate:

$$\sqrt{A_{Ar}/A_{He}} = 3.16$$

A. Zadvornaya, J. Romero, et al. Nucl. Instrum. Meth. B 539 (2023) 33.

Joint APP, HEPP and NP Conference - Liverpool 2024

Three different designs have been suggested for the decay station.

The ${}^{40}Ca({}^{60}Ni, 2p2n){}^{96}Pd$ reaction was used to determine the position of A=96 recoils.

J. Romero, *et al.* Acta Phys. Pol. B Proc. Suppl. 16 (2023) 4-A12.

Joint APP, HEPP and NP Conference - Liverpool 2024