Coulomb Excitation in ⁸⁰Sr Reuben Russell

Introduction & Aims

- ⁸⁰Sr lies in the region of Z=N=40, known to be strong quadrupole deformation
- Experiment with TIGRESS at TRIUMF
- States in ⁸⁰Sr
- Explore possible coexisting or triaxial shapes in ⁸⁰Sr_{gnd}
- Recent work has pointed at changes in collectivity around Z=40 and N=40

Nuclear Deformation

- Nuclei aren't always spherical
- Quadrupole deformed shapes are common
- Triaxial shapes all three axes different
- Coexisting shapes two or more shapes at similar energy

Nickel Z=28

Arsenic 60As

55Cu 56Cu 57Cu 58Cu

56Ni

61Cu 62Cu 63Cu 64Cu 65Cu

57NI <mark>58NI</mark> 59NI <mark>60NI</mark> 62NI <mark>62NI</mark> 63NI 64NI 65NI

Overview of the Experiment

- ⁸⁰Sr beam on a 0.882 mg/cm^{2 208}Pb target
- Beam energy of 4.25 MeV/u
- Energy of the ⁸⁰Sr in the beam was 340.0 MeV
- Coulomb excitation of the ⁸⁰Sr was carried out

Coulomb Excitation

- Beam nucleus approaches the target nucleus
- The nuclei interact with one another, excite and scatter
- Excited nuclei decays by gamma emission
- A benefit is that it is selective, excitation is dominated by electric transitions.

Coulomb Excitation

 Technique allows for measurement of the transition probabilities and spectroscopic quadrupole moments of states

- Reorientation effect leads to an observable difference in the cross section with a dependence on scattering angle
- B(EL) comes from the off diagonal matrix elements
- Q_s comes from the diagonal matrix elements

Experimental Setup

- The setup at TRIUMF used TIGRESS and Bambino
- TIGRESS is a segmented germanium array for gamma detection
- Bambino is two up and downstream annular S3 detectors

Beam Production

- Beam Produced using the TRIUMF cyclotron and a Nb target
- Ion-Guide Laser Ion Source (IG-LIS) for first stage
- Electron Cyclotron Resonance (ECR) Charge State Breeder (CSB) for second stage

3.316 3.314

3.312 3.310

 Stripped to a higher charge state and accelerated

Analysis

UNIVERSITY OF SURREY

Analysis

• When focusing on the ⁸⁰Sr $2^+_1 \rightarrow 0^+_1$ we see ~700 counts in the A=80 cut and ~300 in the ²⁰⁸Pb cut which can be attributed to ⁸⁰Sr:

Analysis - GOSIA

- GOSIA = Semi-classical coupled channels Coulomb excitation code
- Input yields and detection angles, output matrix elements
- Can be found from outputs:
 - Electric quadrupole moment of levels
 - B(E2) of transitions

Analysis

 Slightly off-centre beam → In GOSIA, "re-assigned" detector ring positions to the ring where the data is collected. Done by taking the intersection of the detector ring and the "effective" ring in the plane of the S3.

Results and Summary

- Q_s for first excited state of ⁸⁰Sr, this is the first measurement of this value.
- The current analysis for $Q_{s(2^{+}1)}$ shows a likely oblate shape. Differing from other Sr isotopes in this region
- For an axially symmetric system, the limits of Q_s is expected to be |0.89|eb
- This work shows that ⁸⁰Sr is not consistent with an axially prolate system and is more akin to a triaxially soft prolate or oblate shape.
- Further work is needed to constrain uncertainties Currently dominated by ⁸⁰Se Comptons

⁸⁰ Sr	This Work
Q _s (2₁⁺) [eb]	0.73 (115)

Acknowledgements

J. Henderson¹, J. Heery¹, C. Andreoiu², D. W. Annen², A. Avaa³, G. Ball³, V. Bildstein⁴, S. Buck⁴, C. Cousins¹, S. Gillespie⁵, B. Greaves⁴, A. Grimes³, G. Hackman³, R. Hughes⁶, D. Jenkins⁷, M. Martin², C. Müeller-Gatermann⁸, J. R. Murias³, S. Murillo-Morales³, S. Pascu¹, D. Rhodes³, J. Smallcome⁹, P. Spagnoletti², C. Svensson⁴, B. Wadsworth⁷, B. Wallis⁷, J. Williams³, C.-Y. Wu⁶, D. Yates³

¹ University Of Surrey, UK
² Simon Fraser University, Canada
³ TRIUMF, Canada
⁴ University Of Guelph, Canada
⁵ FRIB, USA
⁶ Lawrence Livermore National Laboratory, USA
⁷ University Of York, UK
⁸ Argonne National Laboratory, USA
⁹ Japan Atomic Energy Agency, Japan