Spectroscopy of ${ }^{23}$ F Following a One-Neutron Removal Reaction

IOP Joint APP, HPP and NP
Conference-2024

Luke Tetley

Light Neutron-Rich Nuclei

$>$ Rich experimental testing grounds for nuclear models

- Appearance of non-standard magic numbers ($\mathrm{N}=14 \& N=16$)
- Halo nuclei (${ }^{11} \mathrm{Li} \&{ }^{11} \mathrm{Be}$)
- Exotic decay modes (${ }^{26} \mathrm{O} 2 n$ emission)

Light Neutron-Rich Nuclei

$>$ Rich experimental testing grounds for nuclear models

- Appearance of non-standard magic numbers ($\mathrm{N}=14 \& N=16$)
- Halo nuclei (${ }^{11} \mathrm{Li} \&{ }^{11} \mathrm{Be}$)
- Exotic decay modes (${ }^{26} \mathrm{O} 2 n$ emission)
> Oxygen isotopic chain has had a notable role - Correct description of "oxygen anomaly" with inclusion of 3 N forces
T. Otsuka et al. / Phys. Rev. Lett. 105 (2010)
H. Hergert et al. / Phys. Rev. Lett. 110 (2013)

Light Neutron-Rich Nuclei

$>$ Rich experimental testing grounds for nuclear models

- Appearance of non-standard magic numbers ($\mathrm{N}=14 \& N=16$)
- Halo nuclei (${ }^{11} \mathrm{Li} \&{ }^{11} \mathrm{Be}$)
- Exotic decay modes (${ }^{26} \mathrm{O} 2 n$ emission)
> Oxygen isotopic chain has had a notable role - Correct description of "oxygen anomaly" with inclusion of 3 N forces
T. Otsuka et al. / Phys. Rev. Lett. 105 (2010)
H. Hergert et al. / Phys. Rev. Lett. 110 (2013)

> Region has proven critical for benchmarking nuclear interactions
- Observables sensitive to the details of the nuclear interactions

Nuclear Structure of ${ }^{23} \mathrm{~F}$

> Structure of a single valence proton outside of ${ }^{22} \mathrm{O}$ core ($Z=8, N=14$)

- Study of S.P. degrees of freedom on top of closed shell

Nuclear Structure of ${ }^{23} \mathrm{~F}$

$>$ Structure of a single valence proton outside of ${ }^{22} \mathrm{O}$ core ($Z=8, N=14$)

- Study of S.P. degrees of freedom on top of closed shell
$>$ Probe the role of the tensor force
- Splitting the $\pi 1 \mathrm{~d}_{5 / 2}-\pi 2 \mathrm{~s}_{1 / 2}$ via occupancy of neutron shells
- \quad Changes in S.P. structure linked to tensor force

Nuclear Structure of ${ }^{23} \mathrm{~F}$

> Structure of a single valence proton outside of ${ }^{22} \mathrm{O}$ core ($Z=8, N=14$)

- Study of S.P. degrees of freedom on top of closed shell
$>$ Probe the role of the tensor force
- Splitting the $\pi 1 \mathrm{~d}_{5 / 2}-\pi 2 \mathrm{~s}_{1 / 2}$ via occupancy of neutron shells

- Changes in S.P. structure linked to tensor force
> One-neutron KO of ${ }^{24} \mathrm{~F}$ should populate states from $1 / 2^{+}$to $11 / 2^{+}$
- From ${ }^{24} \mathrm{~F}$ g.s. 3^{+}coupled to $\mathrm{v} 1 \mathrm{~d}_{5 / 2}$

Experiment Overview

$>$ Nuclear excited states of ${ }^{23} \mathrm{~F}$ investigated via in-beam γ-ray spectroscopy following 1 n removal of a ${ }^{24} \mathrm{~F}$ beam
> Measurement was carried out at NSCL, using GRETINA coupled to the S800 spectrograph to measure the γ-rays of interest

S800 Spectrograph

A1900 Fragment

Experiment Details - Beam Delivery

> $95 \mathrm{AMeV}^{24} \mathrm{~F}$ beam (95% purity) delivered by A 1900

- Via ${ }^{48}$ Ca primary beam fragmentation on a $893 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9}$ Be primary target
- Accelerated by K500 and K1200 coupled cyclotrons
$>{ }^{24} \mathrm{~F}$ fragments directed at $370 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9}$ Be secondary target
- Wherein the 1 neutron removal reactions took place
- Target shifted 13 cm upstream from nominal position

To the secondary ${ }^{9} \mathrm{Be}$ target and GRETINA and the S800
\qquad

Experiment Details - Beam Delivery

> $95 \mathrm{AMeV}^{24} \mathrm{~F}$ beam (95% purity) delivered by A 1900

- Via ${ }^{48}$ Ca primary beam fragmentation on a $893 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9}$ Be primary target
- Accelerated by K500 and K1200 coupled cyclotrons

$\Rightarrow{ }^{24} \mathrm{~F}$ fragments directed at $370 \mathrm{mg} / \mathrm{cm}^{2}{ }^{9}$ Be secondary target
- Wherein the 1 neutron removal reactions took place
- Target shifted 13 cm upstream from nominal position

Electromagnetic properties of ${ }^{21} \mathrm{O}$ for benchmarking nuclear Hamiltonians

[^0]
GRETINA

UNIVERSITY Of POTK
> γ-rays emitted in flight were detected by GRETINA

- 9 modules available for this experiment, 1.2π solid angle coverage
- Covering $\sim 25^{\circ}$ to $\sim 80^{\circ}$ w.r.t. target position
- State-of-the-art tracking, enables good Doppler reconstruction
$>$ The S800 used for the identification and tracking of outgoing fragments
- \quad Timing scintillators, CRDCs and IC at the focal plane

Particle Identification (PID)

> Incoming PID, TOFs between timing scintillators

- Plastic scintillators at (OBJ) station, A1900 (Xfp) and S800 (E1) focal planes
- Diagonal lines denote incoming fragments with same velocities
$>$ Outgoing PID, energy loss in IC against TOF between OBJ and E1
- TOF corrected for fragment trajectories through S800

$\boldsymbol{\gamma}$-ray Spectrum

$>\gamma$-rays decay in-flight at significant fraction of the speed of light

- Angular dependence on γ-ray energy smears peaks

Doppler Corrected $\boldsymbol{\gamma}$-ray Spectrum

> Doppler correction performed event-by-event

- Average Doppler correction $\beta=0.4175$, to remove energy-angle correlation
- Beam direction from CRDCs at the 8800 focal plane

GEANT4 Simulation Analysis

> Utilized detailed GEANT4 simulations to fully describe the spectrum

- Correct detector response functions, materials and geometries
- Simulated several background components, i.e neutron inelastic peaks, and a double exponential background function

$\boldsymbol{\gamma}-\boldsymbol{\gamma}$ Coincidence Analysis

$>\gamma-\gamma$ coincidence matrix constructed to analyse the cascades

- Background subtraction taken from gates adjacent to data gates
$>$ Limited angular coverage of GRETINA (1.2 π) impacts $\gamma-\gamma$ efficiency
- Only applicable to the most intense transitions

Energy (KeV)

$\boldsymbol{\gamma}$-ray Angular Distributions

> Slicing angular detection range and fitting spectra

- Extraction of the experimental γ-ray angular distributions, in lab frame

$\boldsymbol{\gamma}$-ray Angular Distributions

$>$ Calculated γ-ray angular distributions were fitted to the data

- Converted to the C.M. frame
- A range of distributions for M1 and E2 transition between spins of $1 / 2$ and $11 / 2$
$>$ Enabled spin assignments to the states
- Only for the most intense transitions

[^1]> First observation of several transitions predicted by theory

- New BR data

Results

$>$ First observation of several transitions predicted by theory

- New BR data
> γ-ray angular distribution confirms spin assignments from;
- \quad Shell model (USD-type)
- Previous assignments from fragment ang. dist.

Results

> First observation of several transitions predicted by theory

- New BR data
> γ-ray angular distribution confirms spin assignments from;
- \quad Shell model (USD-type)
- Previous assignments from fragment ang. dist.
> Apparent direct population to s.p proton states
- $2241 \mathrm{keV}\left(\pi 2 \mathrm{~s}_{1 / 2}\right)$ and $4065 \mathrm{KeV}\left(\pi 1 \mathrm{~d}_{5 / 2}\right)$
- Observed feeding can't account for measured intensities
- Mixed nature or unobserved feeding?

Shell-Model Calculations

> Compared data to phenomenological USDtype calculations
> Associated experimental levels via energies, spins, BRs
> USDA and USDB calculations are in best agreement with data

- Not particularly surprising since they are fit with neutron-rich data

$>$ In-beam γ-ray spectroscopy measurement on ${ }^{23} \mathrm{~F}$ following 1 n removal reactions
> First observation of several transitions and excited states predicted by theory
> Observed an apparent direct population to what was previous assigned S.P. proton states

Collaboration

TECHNISCHE
UNIVERSITATT
DARMSTADT
Sebastian Heil
Ina Syndikus
Alexander Hufnagel Michael Mathy

UNIVERSITY of Work

Marina Petri
Stefanos Paschalis
Ryo Taniuchi Luke Tetley Thoryn Haylett

THE ROYAL SOCIETY
 ΔE

Office of Science

Achim Schwenk
Johannes Simonis Javier Menendez Jason Holt

Robert Roth
Klaus Vobig
Thomas Huether TECHNISCHE DARMSTADT
Charles Loelius
Kenneth Whitmore
Robert Elder
Nobuyuki Kobayashi
Daniel Bazin
Alexandra Gade
Dirk Weisshaar
Peter Bender
Joe Belarge
Eric Lunderberg
Brandon Elman
Brenden Longfellow
the University of Tokyo
※triumf

TECHNISCHE UNIVERSITAT DARMSTADT

[^0]: A. Stolz et al. / Nucl. Instr. and Meth. in Phys. Res. B 241 (2005) 858-861

[^1]: Thank you to Jeff Tostevin for the Angular Distribution calculations

