

Spectroscopy of ²³F Following a One-Neutron Removal Reaction

IOP Joint APP, HPP and NP Conference - 2024

Luke Tetley

10/04/2024

Light Neutron-Rich Nuclei

- Rich experimental testing grounds for nuclear models
 - Appearance of non-standard magic numbers (N=14 & N = 16)
 - Halo nuclei (¹¹Li & ¹¹Be)
 - Exotic decay modes (²⁶O 2n emission)

Rich experimental testing grounds for nuclear models

- Appearance of non-standard magic numbers (N=14 & N = 16)
- Halo nuclei (¹¹Li & ¹¹Be)
- Exotic decay modes (²⁶O 2n emission)

- Oxygen isotopic chain has had a notable role
 - Correct description of "oxygen anomaly" with inclusion of 3N forces

T. Otsuka *et al.* / Phys. Rev. Lett. **105** (2010) H. Hergert *et al.* / Phys. Rev. Lett. **110** (2013)

Light Neutron-Rich Nuclei

Rich experimental testing grounds for nuclear models

- Appearance of non-standard magic numbers (N=14 & N = 16)
- Halo nuclei (¹¹Li & ¹¹Be)
- Exotic decay modes (²⁶O 2n emission)

- Oxygen isotopic chain has had a notable role
 - Correct description of "oxygen anomaly" with inclusion of 3N forces

T. Otsuka *et al.* / Phys. Rev. Lett. **105** (2010) H. Hergert *et al.* / Phys. Rev. Lett. **110** (2013)

- Region has proven critical for benchmarking nuclear interactions
 - Observables sensitive to the details of the nuclear interactions

Light Neutron-Rich Nuclei

Nuclear Structure of ²³F

- Structure of a single valence proton outside of ²²O core (Z=8, N=14)
 - Study of S.P. degrees of freedom on top of closed shell

Nuclear Structure of ²³F

2s_{1/2} 2s_{1/2} $1d_{5/2}$ 1d_{5/2} 1p_{1/2} $1p_{1/2}$ ²²O core 1p_{3/2} $1p_{3/2}$ 1s_{1/2} 1S1/2 π v ²³F 3/2+ (4065) 3/2+ (3440) $1/2^{+}(2241)$ $1/2^{+}(1720)$ 3/2+ (1730) 3/2+ (1554) 1/2+ (495) 1/2+ (289)

5/2+ (0)

²¹F

 $5/2^{+}(0)$

²³F

5/2+ (0)

25F

5/2+ (197)

 $1/2^{+}(0)$

¹⁹F

5/2+ (0)

17F

- Structure of a single valence proton outside of \succ ²²O core (Z=8, N=14)
 - Study of S.P. degrees of freedom on top of closed shell -

- Probe the role of the tensor force \succ
 - Splitting the $\pi 1d_{5/2} \pi 2s_{1/2}$ via occupancy of neutron shells
 - Changes in S.P. structure linked to tensor force _

Nuclear Structure of ²³F

 $2s_{1/2}$ $2s_{1/2}$ $1d_{5/2}$ $1d_{5/2}$ $1p_{1/2}$ $1p_{1/2}$ ²²O core 1p_{3/2} $1p_{3/2}$ 1s_{1/2} 1S1/2 Π v 23F 3/2+ (4065) 3/2+ (3440) $1/2^{+}(2241)$ $1/2^{+}(1720)$ 3/2+ (1730) 3/2+ (1554) 1/2+ (495)

1/2+ (289)

5/2+ (0)

²¹F

 $5/2^{+}(0)$

23F

5/2+ (0)

25F

5/2+ (197)

 $1/2^{+}(0)$

19F

5/2+ (0

17F

- Structure of a single valence proton outside of ²²O core (Z=8, N=14)
 - Study of S.P. degrees of freedom on top of closed shell

- Probe the role of the tensor force
 - Splitting the $\pi 1d_{5/2} \pi 2s_{1/2}$ via occupancy of neutron shells
 - Changes in S.P. structure linked to tensor force
- > One-neutron KO of ²⁴F should populate states from $1/2^+$ to $11/2^+$
 - From ²⁴F g.s. 3⁺ coupled to v1d_{5/2}

Experiment Overview

- UNIVERSITY UNIVERSITY
- Nuclear excited states of ²³F investigated via in-beam γ-ray spectroscopy following 1n removal of a ²⁴F beam
- Measurement was carried out at NSCL, using GRETINA coupled to the S800 spectrograph to measure the γ-rays of interest

Experiment Details - Beam Delivery

- > 95 AMeV ²⁴F beam (95% purity) delivered by A1900
 - Via ⁴⁸Ca primary beam fragmentation on a 893 mg/cm² ⁹Be primary target
 - Accelerated by K500 and K1200 coupled cyclotrons
- ²⁴F fragments directed at 370 mg/cm^{2 9}Be secondary target
 - Wherein the 1 neutron removal reactions took place
 - Target shifted 13 cm upstream from nominal position

To the secondary ⁹Be target and GRETINA and the S800

Experiment Details - Beam Delivery

- 95 AMeV ²⁴F beam (95% purity) delivered by A1900
 - Via ⁴⁸Ca primary beam fragmentation on a 893 mg/cm² ⁹Be primary target
 - Accelerated by K500 and K1200 coupled cyclotrons
- ²⁴F fragments directed at 370 mg/cm^{2 9}Be secondary target
 - Wherein the 1 neutron removal reactions took place
 - Target shifted 13 cm upstream from nominal position

Electromagnetic properties of $^{\rm 21}{\rm O}$ for benchmarking nuclear Hamiltonians

S. Heil⁴, M. Petri^{b.a.e}, K. Volig⁴, D. Bazin⁴, J. Belarge⁴, P. Bender⁴, B.A. Brown⁴, R. Elder⁴, B. Elman⁴, A. Gade⁴, T. Haylett^b, J.D. Holt⁷, T. Hüther⁴, A. Hufnagel⁴, H. Iwasak⁴, N. Kobayash⁴, C. Loelius⁴, B. Longfellow⁴, E. Lunderberg⁴, M. Mathy⁴, J. Menéndez⁸, S. Paschalis⁵, R. Roth⁴, A. Schwenk^{4,hb,4}, J. Simonis⁴, I. Syndikus⁴, D. Weisshaar⁴, K. Whitmov⁴a⁴

To the secondary ⁹Be target and GRETINA and the S800

Experiment Details - GRETINA & S800

UNIVERSITY

- \succ γ -rays emitted in flight were detected by GRETINA
 - 9 modules available for this experiment, 1.2π solid angle coverage
 - Covering ~25° to ~80° w.r.t. target position
 - State-of-the-art tracking, enables good Doppler reconstruction
- > The S800 used for the identification and tracking of outgoing fragments
 - Timing scintillators, CRDCs and IC at the focal plane

Particle Identification (PID)

- Incoming PID, TOFs between timing scintillators
 - Plastic scintillators at (OBJ) station, A1900 (Xfp) and S800 (E1) focal planes
 - Diagonal lines denote incoming fragments with same velocities
- ➢ Outgoing PID, energy loss in IC against TOF between OBJ and E1
 - TOF corrected for fragment trajectories through S800

γ-ray Spectrum

- \succ γ -rays decay in-flight at significant fraction of the speed of light
 - Angular dependence on γ -ray energy smears peaks

Doppler Corrected γ-ray Spectrum

- > Doppler correction performed event-by-event
 - Average Doppler correction β = 0.4175, to remove energy-angle correlation
 - Beam direction from CRDCs at the S800 focal plane

GEANT4 Simulation Analysis

- > Utilized detailed GEANT4 simulations to fully describe the spectrum
 - Correct detector response functions, materials and geometries
 - Simulated several background components, i.e neutron inelastic peaks, and a double exponential background function

γ-γ Coincidence Analysis

- $\gamma \gamma$ coincidence matrix constructed to analyse the cascades
 - Background subtraction taken from gates adjacent to data gates
- > Limited angular coverage of GRETINA (1.2 π) impacts γ γ efficiency
 - Only applicable to the most intense transitions

\gamma-ray Angular Distributions

- Slicing angular detection range and fitting spectra
 - Extraction of the experimental γ -ray angular distributions, in lab frame

γ-ray Angular Distributions

- > Calculated γ -ray angular distributions were fitted to the data
 - Converted to the C.M. frame
 - A range of distributions for M1 and E2 transition between spins of 1/2 and 11/2
- Enabled spin assignments to the states
 - Only for the most intense transitions

Thank you to Jeff Tostevin for the Angular Distribution calculations

Results

- First observation of several transitions predicted by theory
 - New BR data
- γ-ray angular distribution confirms spin assignments from;
 - Shell model (USD-type)
 - Previous assignments from fragment ang. dist.

Results

- First observation of several transitions predicted by theory
 - New BR data
- γ-ray angular distribution confirms spin assignments from;
 - Shell model (USD-type)
 - Previous assignments from fragment ang. dist.

- Apparent direct population to s.p proton states
 - 2241 keV ($\pi 2s_{1/2}$) and 4065 KeV ($\pi 1d_{5/2}$)
 - Observed feeding can't account for measured intensities
 - Mixed nature or unobserved feeding?

Thank you to Alex Brown for the Shell Model calculations

Shell-Model Calculations

 Compared data to phenomenological USD-type calculations

Associated experimental levels via energies, spins, BRs

- USDA and USDB calculations are in best agreement with data
 - Not particularly surprising since they are fit with neutron-rich data

Summary

UNIVERSITY

 In-beam γ-ray spectroscopy measurement on ²³F following 1n removal reactions

 First observation of several transitions and excited states predicted by theory

 Observed an apparent direct population to what was previous assigned S.P. proton states

Collaboration

Sebastian Heil

Ina Syndikus Alexander Hufnagel Michael Mathy

Marina Petri Stefanos Paschalis Ryo Taniuchi Luke Tetley Thoryn Haylett

MICHIGAN STATE UNIVERSITY

Hiro Iwasaki Charles Loelius Kenneth Whitmore Robert Elder Nobuyuki Kobayashi Daniel Bazin Alexandra Gade Dirk Weisshaar Peter Bender Joe Belarge Eric Lunderberg **Brandon Elman Brenden Longfellow**

Deutsche

Achim Schwenk

Johannes Simonis

Javier Menendez Jason Holt

THE UNIVERSITY OF TOKYO

Robert Roth Klaus Vobig **Thomas Huether**

Alex Brown

