

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding Neutron irradiations at the University of Birmingham High Flux Accelerator Driven Neutron Facility (HF-ADNeF)

> Jack Bishop University of Birmingham

UK IOP Joint APP, HEPP and NP Annual Conference 2024

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF)

Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF)

HF-ADNeF Overiew

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility

Applications Neutrons s-process studies Scattering effects Overview Team/funding

- Neutron Therapeutics machine
- Hyperion type: 0.4-2.6 MV single-ended electrostatic acceleration
- Easily achievable and stable > 30 (up to 50) mA protons delivered onto (600 rpm) rotating Li target
- Solid Li target, 0.3-mm-thick, copper backed and water cooled to produce neutrons via ⁷Li(p, n)

Broad applications

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutror Facility (HF-ADNeF) Overview of facility Applications Neutrons

s-process studies Scattering effects Overview Team/funding

- Nuclear materials research under neutron irradiation
- Nuclear fission/fusion data e.g. neutron capture cross section data
- Nuclear waste management, understanding the long term effects of radiation on material characteristics
- High power target development
- Medical physics:
 - BNCT developments: Kiran Nutter Wednesday III Session A (14:30)
 - Medical isotope production: Max Conroy Monday Poster Session
 - Radiobiology
- Industrial and space research on the effect of radiation
- Nuclear metrology, calibrated and controllable neutron source availability and testing of new radiation monitoring systems
- Nuclear astrophysics

Target room

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutror Facility (HF-ADNeF) Overview of facility Applications Neutrons *-process studies Scattering effects Overview Team/funding

- \approx 3x3 m² of space in the room
- Lead shielding to protect from ⁷Be accumulated in the target (~ TBq)
- 42 mm from target to outside of vacuum vessel (incl. 3 mm Cu, 7 mm graphite, 6 mm Ti)

Neutron yields - 30 mA protons

s-process studies

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons serveces studies Scattering effects Overview Team/fumfing Choosing the right energy of protons ($E_p = 1.912 \text{ MeV}$) gives a neutron energy spectrum with roughly kT=30 keV - perfect for s-process studies

Calculate the Maxwellian Averaged Cross Section (MACs) directly for (n, γ)

Masters project: Studies of gamma-ray signature in stars, ⁶⁰Co

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons •process studies Scattering effects Overview Team/funding

- Irradiate to do: ${}^{59}Co(n,\gamma){}^{60}Co$
- Abundance from 60 Co β -delayed gamma rays
- Get MACs for ${}^{59}\text{Co}(n,\gamma){}^{60}\text{Co}$ (known)
- Breeding ⁶⁰Co in the target allows us to study:
 - ${}^{60}Co(n,\gamma){}^{61}Co$ (not known)

Tim Williams & Patrick Galvin

- ⁶¹Co half life of 1.65 hours shows need for high intensity to reach realistic equilibrium activity for background 67 keV gamma (or 3.6% 917.5 keV)
 - Activity of cobalt measured relative to Mo, Mn and Au
 - Big discrepancies found in measured vs. expected MACS

Target flange scattering effects

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Seattering effects Overview Team/funding

- Large resonances around 20 keV cause significant attenuation/scattering (6/cm)→ 3.6 interaction lengths!
- Neutron (elastic) scattering off titanium vacuum vessel therefore loses neutrons of certain energies

GEANT4 simulations

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding GEANT4 simulation developed - bespoke $^{7}Li(p, n)$ PrimaryGeneratorAction class created with correct differential and total cross sections (vanilla GEANT4 did not reproduce expected results)

Simulated neutron spectrum

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding

Neutron Spectrum at $E_p = 1.912$ MeV

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team //umfing

Solution 1

Find a material that counter-acts the Ti attenuation to flatten out the spectrum

- Too many resonances can only make the spectrum more confusing
- Not a viable option

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding

Solution 2

Run with higher energy neutrons + graphite to backscatter neutrons to lower energies

Neutron Spectrum at $E_p = 1.950$ MeV with 25mm Graphite

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding

Solution 2

Run with higher energy neutrons $+\ graphite$ to backscatter neutrons to lower energies

- Works well to smooth spectrum but Maxwell Boltzmann shape is not well-maintained
- Run at multiple energies and unfold to get XS(E)
- Increase in overall neutron intensity due to multiple scatters and higher proton energy
- ⁵⁹Co(n, γ) MACS value of 34.2 ± 1.3 mb against expected 27.1 ± 2.7 mb (kT = 60 keV)
 - Not MACS-like spectrum yet!

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview

Solution 3

Use GEANT4 to understand and correct for the energy spectrum

- Only works as a verification step impossible for isotopes with XS(E) data
- Using this technique for ${}^{59}Co(n, \gamma)$ reproduced a spectrum-averaged cross section (SACS) value of 24.9 \pm 1.5 mb vs expected 25.7 mb

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons Scattering effects Overview Team/funding

Solution 4

Replace the titanium vacuum vessel with a resonance-less material (carbon fibre/graphite)

- Long term ideal plan need to work with manufacturers on warranty-proof solution
- Carbon has no resonances in this region so would be ideal just mechanical/vacuum concerns to consider

Overview

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects **Overview** Team/funding

- High-intensity neutron source up to 0.9 MeV maximum energy
- Up to 3×10^{13} neutrons/s
- Running at lower energy allows direct s-process astrophysical studies
- Suite of Monte Carlo codes developed to model neutron spectra
- Validation study with cobalt shows corrections needed for titanium flange
- Multiple solutions are possible to allow for a campaign of measurements
- High neutron fluence allows for double-activation or long-lived isotopes studies
- Preliminary experiment paves the way for a suite of neutron-activation studies with a well understood energy spectrum

Facility Info

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Overview of facility Applications Neutrons s-process studies Scattering effects Overview Team/funding

Engineering and Physical Sciences Research Council

UNIVERSITY OF BIRMINGHAM FLUX NEUTRON FACILITY

HF-ADNeF funded by EPSRC Grant number EP/T011335/1 and the University of Birmingham

Access funds previously available through NNUF - scheme continuation TBD

Get in touch with the team!

UK IOP Joint APP, HEPP and NP Annual Conference 2024

Jack Bishop

High-Flux Accelerator Driven Neutron Facility (HF-ADNeF) Applications Neutrons seprocess studies Scattering effects Overview Team/funding

Martin Freer - PI

Ben Phoenix Technical lead

Carl Wheldon - Director

Jack Bishop Neutron lead

j.bishop.2@bham.ac.uk

Tzany Kokalova Low-energy theme lead

Contact info and further details