Constraining the NiCu cycle in X-ray bursts: Spectroscopy of ⁶⁰Zn

IOP Conference 2024

Astrophysical Motivation

- Type-I X-ray burst (XRB): thermonuclear explosion in the atmosphere of an accreting neutron star
- Wealth of data from space-borne satellites, e.g. RXTE, Chandra telescope
- Questions remain about shape of light curves and nucleosynthesis products

Astrophysical Motivation

- During burst:
 - $T_{\text{peak}} \sim 0.8 1.5 \text{ [GK]} \rightarrow \text{``breakout'' from}$ hot CNO cycle into the *rp***-process**
- *rp*-process:
 rapid proton captures leading to production of *p*-rich nuclei up to the Sn Te region

Astrophysical Motivation

- During burst: *T*_{peak} ~ 0.8 – 1.5 [GK] → "breakout" from hot CNO cycle into the *rp*-process
- *rp*-process:
 rapid proton captures leading to production of *p*-rich nuclei up to the Sn Te region
- Reaction of interest:
 ⁵⁹Cu(*p*, *γ*)

Reaction of Interest - ${}^{59}Cu(p, \gamma)$

- Competition in the NiCu cycle between ⁵⁹Cu(p, y)⁶⁰Zn - ⁵⁹Cu(p, a)⁵⁶Ni determines nucleosynthesis towards higher masses
- Latter reaction previously studied^[1]
- Present reaction rate based on statistical-model calculations
- Indirect study of 60Zn^[2] shows an abnormal **level-density plateau**

^[1] J. S. Randhawa *et al.*, Phys. Rev. C **104**, L042801 (2021)
 ^[2] D. Soltesz *et al.*, Phys. Rev. C **103**, 015802 (2021)

Reaction of Interest - ${}^{59}Cu(p, \gamma)$

^[3] R.H. Cyburt *et al*., Astrophys. J. **830**, 55 (2016)

Reaction of Interest - ${}^{59}Cu(\rho, \gamma)$

- ⁵⁹Cu(p, y) rate expected to be dominated by resonant capture in ⁶⁰Zn above S_p to low *l*-transfer states at E_x ~ 5.7 – 7.1 [MeV]
- Previous studies^[4] of ⁶⁰Zn limited to high-spin states
- Almost no experimental information exists for p-unbound states in 60Zn within Gamow window

^[4] G. de Angelis *et al.*, Nuc. Phys. A **630**, 426433 (1998)

- Study 60Zn via 59Cu(d,n) p-adding transfer in inverse kinematics at the Facility for Rare Isotope Beams (FRIB):
 - 1. S800 for 60Zn residue selection
 - **2. GRETINA** for *y*-ray energies \rightarrow resonance **energies** E_{res}
 - **3. LENDA** for (*d*,*n*) angular distributions \rightarrow resonance strengths $\omega \gamma$
- Aim to place **constraints** on ${}^{59}Cu(p, y)$ **reaction rate** in Type-I XRBs

$$\langle \sigma \nu \rangle = \left(\frac{2\pi}{\mu kT}\right)^{3/2} \hbar^2 \sum_i \exp\left(-\frac{E_{\text{res},i}}{kT}\right) (\omega \gamma)_i$$

Facility for Rare Isotope Beams (FRIB)

- New \$730M scientific user facility located on Michigan State University (MSU) campus, U.S.
- Utilises recently commissioned Advanced Rare Isotope Separator (ARIS) for delivery of high rate, high purity rare isotope beams
- Primary Beam: ⁷⁸Kr ions, ~ 10 [kW]
- Primary Target: Be, ~ 2 [g/cm²]

- Spectrometer used for separation and selection of 60Zn residues by their mass-to-charge ratio, A/q
- Various detectors placed at stations for time-of-flight and energy loss measurements, particle trajectory tracking
- Secondary Beam: ⁵⁹Cu ions, ~ 10⁷ [pps], 40 [MeV/u]
- Secondary Target: CD₂, ~ 10 [mg/cm²]

Focal Plane

GRETINA & LENDA Detector Arrays

- GRETINA:
 8 HPGe modules used, each with 4 crystals, for *y*-ray detection
- LENDA:
 - 24 plastic scintillation detector bars for neutron detection

⁵⁹Cu(*d*,*n*) Analysis – GRETINA + S800

⁵⁹Cu(*d*,*n*) Analysis – GRETINA + S800

12

⁵⁹Cu(*d*,*n*) Analysis – GRETINA + S800

⁵⁹Cu(*d*,*n*) Analysis – ⁶⁰Zn Level Scheme

Summary and Future Work

In summary:

- 1. Aim to place **constraints** on the **reaction rate** of ${}^{59}Cu(p, y)$ in Type-I XRBs
- 2. Require energies $E_{\rm res}$ and strengths $\omega \gamma$ of resonances in 60Zn
- 3. Ongoing analysis of ${}^{59}Cu(d,n)$ transfer has led to **first identification** of relevant **resonant states** in ${}^{59}Cu(p,y)$

Next steps:

- Finalise ⁶⁰Zn-gated *y*-ray spectroscopy; revisit corrections (S800 particle track, Doppler shift)
- 2. Begin LENDA data analysis

Acknowledgements

C. O'Shea¹, G. Lotay¹, D. T. Doherty¹, A. Gade², T. Ahn³, D. Bardavan³, P. C. Bender⁴, B. A. Brown², S. Byrne⁴, L. Canete¹, W. N. Catford¹, C. Cousins¹, A. Estrade⁵, P. Gastis⁶, S. A. Gillespie², J. Henderson¹, R. Kanungo⁷, B. Longfellow⁸, Z. Meisel⁹, F. Montes¹⁰, M. Moukaddam¹¹, S. Noji², P. O'Malley³, C. Paxman¹, J. Pereira¹⁰, J. S. Randhawa², B. J. Reed¹, A. M. Rogers⁴, H. Schatz¹⁰, D. Seweryniak¹², A. Spyrou¹⁰, N. K. Timofeyuk¹, D. Weisshaar¹⁰, M. Wiescher³, R. G. T. Zegers¹⁰ ¹University of Surrey, Guildford, Surrey, GU2 7XH. UK ² Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824. USA ³University of Notre Dame, Notre Dame, Indiana 46556. USA ⁴ University of Massachusetts Lowell, Lowell, Massachusetts 01854. USA ⁵Central Michigan University, Mount Pleasant, Michigan 48859. USA ⁶Los Alamos National Laboratory, Los Alamos, New Mexico 87545. USA ⁷Saint Mary's University, Halifax, NS B3H 3C3. CANADA ⁸Lawrence Livermore National Laboratory, Livermore, California 94550. USA ⁹Ohio State University, Columbus, Ohio 43210. USA ¹⁰National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824. USA ¹¹Université de Strasbourg, IPHC, 67037 Strasbourg, FRANCE ¹²Argonne National Laboratory, Argonne, Illinois 60439. USA

Acknowledgements

Thank you for your attention

Backup slides

IOP Conference 2024

Dispersive Parameter Gate

Additional gate on particles' dispersive parameters

 (a_{fp}, x_{fp}) ~ (0,0) to remove random scatter, ⁵⁹Cu bleed-in events

b1

^[5] [online]: *https://wikihost.nscl.msu.edu/*

Add-back Algorithm

- Add-back algorithm implemented as seen in D. Weisshaar *et al.* ^[6]
- Looks to nearest-neighbour crystal events, and increments spectrum for n0n1 events
- *n2ng* events are discarded

Add-back Algorithm

- Add-back algorithm implemented as seen in D. Weisshaar *et al.* ^[6]
- Looks to nearest-neighbour crystal events, and increments spectrum for n0n1 events
- *n2ng* events are discarded
- ABF(1004 keV) = 1.15

bЗ

^[6] D. Weisshaar *et al.*, Nuc. Inst. and Meth. In Phys. Res. A **847**, 187198 (2017)

Present Status of LENDA Analysis

- LENDA data still requires some work - γ flash currently too wide for reliable n/γ discrimination
- Need to calibrate light outputs, and correct time-of-flights for accurate neutron selection

