

GEN-II Experiment

Measuring the Neutron Electric Form Factor at High Q²

Gary Penman APP, HEPP & NP IOP 10.04.24

GEN-II: Neutron Electric Form Factor at High Q²

Elastic eN Scattering and Form Factors

Nucleon structure is revealed in the Q² evolution of the form factors

Electric Form Factor of the Neutron (GEn)

World data for GEn from polarized measurements

Projected points for GEn-II experiment and preliminary GEn-I points.

Hall A Experimental Setup: Super Bigbite Spectrometer

Electron Arm: Bigbite

- 750A Dipole Magnet
- Full Detector Stack
 - Calo Trigger
 - **GEM Tracking**
 - Cherenkov
 - Timing Hodoscope

Nucleon Arm: SBS

- 2100A Dipole Magnet
- Hadron Calorimeter

Polarised ³He Target

Analysis: e⁻ Track Selection

<u>*π*</u> rejection

different behaviors in the preshower calorimeter and

in energy deposition and

cluster size respectively

GRINCH cherenkov detector

Tracking Performed by Gas Electron Multipliers (GEMs) Calorimeter trigger provides a track search region. Track algorithm finds all possible tracks with at least 3 hits within the 5 GEM layers Track Algorithm produces a "best track" per event with 99%+ efficiency

Remove scattering associated with target and beryllium beam-pipe window.

A wide starting cut around the nucleon mass squared, 0.88 GeV² removes superelastic & most inelastic events

Exclusive Nucleon Selection

Demand coincidence trigger between Bigbite and SBS.

Project q-vector towards HCal.

Quasi-elastic position projected-detected cuts (dx, dy) select on QE spots

Preliminary Asymmetries and Backgrounds

In Progress analysis of background fractions and associated dilution asymmetries

Preliminary Asymmetries and Backgrounds

In Progress analysis of background fractions and associated dilution asymmetries

Conclusion & Next Steps

- Pass 2 data requirements
 - > Calorimeter re-calibration on neutron data
 - Inclusion of Cherenkov calibrated database
 - Recalibration of all detectors timing relative to timing hodoscope, due to recent progress in understanding this detector
- Finalise Thesis Analysis
 - > Quantify dilution factors and backgrounds using final full simulation data
 - > FInish cut optimisation using full uncertainty in every iteration and bin
 - Final event selection cuts
- Publication
 - > Full analysis likely a few years more progress. Pass 3 not ruled out.

THANKS!

Backup

What Is A Form Factor?

Generally, a form factor is just a fourier transform of a charge distribution:

$$F(\vec{q}) = \int d^3r \rho(r) e^{i\vec{q}\cdot\vec{r}}$$

Elastic Form Factors G_E , G_M Describe internal structure of nucleons.

Related to charge and magnetization distributions within the nucleon.

Flavour Separation

Extracted G_F and G_M can be decomposed $F_1 = \frac{G_E + \tau G_M}{1 + \tau}$ $F_2 = -\frac{G_E - G_M}{1 + \tau}$ Different behaviour of u and d quarks may indicate diquark correlations ~ 1/Q² U, ~ 1/Q⁴ !

Global Database for proton form factors obtained via Rosenbluth Separation method. Neutron form factors much less well understood - <u>no free neutron targets!</u>

Proton FFs in Double Polarisation Experiments

Recoil Polarisation techniques area more sensitive way to measure $\mathbf{G}_{p}^{\mathsf{E}}$ which is multiplied by $\mathbf{G}_{p}^{\mathsf{M}}$ in the transverse component of the polarization, \mathbf{P}_{T} .

Unlike the Rosenbluth Method, the cross section is not increasingly dominated by $\mathbf{G^2}_{M}$ at large \mathbf{Q}^2 .

World data for μG^{E}_{p} / G^{M}_{p} is shown on the left.

Magnetic Form Factor of the Neutron (GMn)

Existing data for GMn ($Q^2 > 1$ GeV), plotted as ratio to scaled dipole approximation.

Blue - CLAS e5 run, green + magenta - SLAC, yellow - old/legacy

SBS should have reduced systematic uncertainty at high Q² in part due to ratio method.

Hall A: Super Bigbite Spectrometer (SBS)

2 arm spectrometer - large $\overline{x}, \overline{p}$ acceptance!

High precision form factor measurements

Installed 2020/21

First experimental run 2021/22 (GMn)

Polarised ³He target installed 2022

First ³He run 2022/23 (GEn) completed

Future experiments GEn-RP, Pion SDPO, GEp-V - extend in to 2025

Electron Arm: Bigbite

- Bigbite magnet
- (4 Front +1 Rear) XY gas electron multiplier (GEM) tracking layers.
- Gas Cherenkov (GRINCH) detector
- Preshower Calorimeter (2x26 lead-glass blocks)
- Timing Hodoscope (89bars + 178pmts)
- Shower Calorimeter (7x27 lead-glass blocks)

BBCAL forms single arm trigger. Analogue sum of energy deposited in each trigger block.

P. Datta (FC NHP 2022) https://indico.jlab.org/event/529/contributions/10270/attachments/8180/11693/F%26C MIT gmn%26bbcal 2022.pdf

Nucleon Arm: Super Bigbite

• SBS Magnet

- 2100A at 100% p,n separation!
- (2INFN + 6UVa) GEM layers
 - Fully utilised in GEp
- Hadron Calorimeter [HCAL] (242 Fe/Scintillator plate blocks)
 - ~700ps TOF and ~30% energy resolution

HCAL + BBCAL function as coincidence trigger

CEBAF: Continuous Electron Beam Accelerator Facility

Linearly polarised electron beams up to 12 GeV and around 85% polarisation to four experimental halls simultaneously

Polarised ³He Target

10 atm glass 'cell' comprised of pumping chamber (PC), transfer tubes (TT) and target chamber (TC).

PC Filled with 3 He, N $_{2}$, and 2 alkali metals (K-19 and Rb-85)

PC resides inside ceramic 'oven' at around 260 degrees C.

~650nm lasers directed into sides of PC via mirror system, with about 160 W total power.

Polarised ³He Target

Entire system located within set of Helmholtz (HH) coils.

Downstream transfer tube has heater strip to induce convection around cell.

³He gas polarised via spin exchange optical pumping (SEOP).

Rotate to match magnets

RTDs for Temp monitoring

Spin Exchange Optical Pumping (SEOP)

Alkali vapor polarized by optical pumping from laser radiation.

Collide with ³He transferring spin via hyperfine interactions

$$P_{\rm He}(t) = P_{\rm Alk} \frac{\gamma_{se}}{\gamma_{se}(1+X) + \Gamma} \left(1 - e^{-t(\gamma_{se} + \Gamma)}\right)$$

Nitrogen Suppresses reradiation via quenching of excited atoms

Mix of Kb and K increases <u>efficiency</u> of polarization of the helium

High power diode lasers allow for larger <u>volume</u> of helium to be polarized

Nuclear Magnetic Resonance (NMR)

- Apply RF field to spins
 - $\circ \quad \text{Resonance} \to \text{Signal in Coils}$
- Meet Resonance Criteria Via Adiabatic Fast Passage (AFP)
- Destructive measurement AFP sweeps cause losses ~1%
- mV:% conversion factor required to get true polarisation value

$$D_x = \frac{US_x + DS_x}{2} \quad D_y = \frac{US_y + DS_y}{2}$$
$$D = \sqrt{D_x^2 + D_y^2}$$
$$S_{NMR} \approx D$$

Electron Paramagnetic Resonance (EPR)

EPR - Measure Zeeman Effect in K electrons

- Frequency sweep over alkali resonance modes
 - Signal when frequency == splitting.
- Signal is first derivative of absorption spectrum
- EPR non destructive AFP still causes losses.

$$c = \frac{S_{\text{NMR}}}{P_{\text{EPR}}(n_{\text{p}}\Phi_{\text{p}} + n_{\text{t}}\Phi_{\text{t}} + n_{\text{tt}}\Phi_{\text{tt}})}$$

NMR + EPR

$$\begin{split} \sigma_{h} &= \Sigma + h\Delta \\ A_{N} &= \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\Delta}{\Sigma} \\ \Sigma &= \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \frac{E_{f}}{E_{i}} \left(\frac{G_{E}^{2} + \tau G_{M}^{2}}{1 + \tau} + 2\tau G_{M}^{2} \tan^{2}(\theta/2) \right) \\ \Delta &= -2 \frac{d\sigma}{d\Omega} \bigg|_{\text{Mott}} \frac{E_{f}}{E_{i}} \sqrt{\frac{\tau}{1 + \tau}} \tan(\theta/2) \left[\sqrt{\tau(1 + (1 + \tau) \tan^{2}(\theta/2))} \cos\theta^{*} G_{M}^{2} + \sin\theta^{*} \cos\phi^{*} G_{M} G_{E} \right] \\ A_{\text{phys}} &= -\frac{2\sqrt{\tau(\tau + 1)} \tan(\theta/2) G_{E}^{n} G_{M}^{n} \sin\theta^{*} \cos\phi^{*}}{(G_{E}^{n})^{2} + (G_{M}^{n})^{2}(\tau + 2\tau(1 + \tau) \tan^{2}(\theta/2))} \\ &- \frac{2\tau\sqrt{1 + \tau + (1 + \tau)^{2} \tan^{2}(\theta/2)} \tan(\theta/2) (G_{M}^{n})^{2} \cos\theta^{*}}{(G_{E}^{n})^{2} + (G_{M}^{n})^{2}(\tau + 2\tau(1 + \tau) \tan^{2}(\theta/2))} \\ &\int A_{\perp} &= -\frac{G_{E}^{n}}{G_{M}^{n}} \frac{2\sqrt{\tau(\tau + 1)} \tan(\theta/2)}{(G_{E}^{n}/G_{M}^{n})^{2} + (\tau + 2\tau(1 + \tau) \tan^{2}(\theta/2))} \end{split}$$

Statistical Uncertainty Handling

Asymmetry in Polarisation measurement