

Testing lepton flavor universality at CMS

Jay Odedra (Imperial College London), on behalf of the CMS Collaboration

10th April 2024

IOP Joint APP and HEPP Annual Conference

CMS Detector

- General purpose detector
- Collection of subdetectors that are successively layered around an interaction point
- Core feature is the 4 Tesla solenoid that bends the paths of moving charged particles
- Comprised of tracker, ECAL, HCAL, muon chambers
- Subdetectors work together with software to reconstruct P-P collision decays.

CMS Programme

LFU

- LFU is an accidental symmetry of the Standard Model
- Couplings between EW gauge bosons and leptons are equal across all generations
- Has been tested extensively in W, Z, Tau, Pion and Kaon decays, all consistent with SM
- LFU violation may occur measurably through processes which include the b → sℓℓ transition due to its heavy suppression in SM

R_K observable

R_{K}

- Ratio of charged B decays to kaons and leptons (muons & electrons)
- Ratio great as hadronic form factor uncertainties largely cancel
- R_K is measured in bins of q² of the di-lepton system to avoid charmonium resonances
- Low- q^2 bin is $1.1 < q^2 < 6.0 \text{ GeV}^2$
- SM prediction $R_K (1.1 < q^2 < 6.0) = 1.00 \pm 0.01$
- This ratio is then further divided by its corresponding J/Psi resonance decay, to cancel out most systematics

$$R_{K} = \frac{\frac{\int_{q_{min}}^{q_{max}^{2}} \mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-}(q^{2})) dq^{2}}{\mathcal{B}(B^{+} \to K^{+} J/\Psi(\mu^{+} \mu^{-}))}}{\frac{\int_{q_{min}}^{q_{max}^{2}} \mathcal{B}(B^{+} \to K^{+} e^{+} e^{-}(q^{2})) dq^{2}}{\mathcal{B}(B^{+} \to K^{+} J/\Psi(e^{+} e^{-}))}}$$

Latest R_K Results (LHCb results)

CMS

- LHCb's Run 2 analysis results displayed a 3.1 σ deviation from SM
- Deviation was due to electron misidentification
- Misidentifying one or more hadrons as electrons can create peaking structures which impact invariant mass fits
- Reducing R_{κ} away from unity
- Latest LHCb Run 2 results shows $\rm R_{\rm K}$ to be compatible with the SM

$$\mathsf{R}_{\mathsf{K}} = 0.949^{+0.047}_{-0.046}$$

Trigger System

Data flow for a typical 2018 data-taking scenario

For detailed explanation look at https://arxiv.org/abs/2403.16134

Jay Odedra (ICL)

BParking Strategy

Strategy

- Suite of muon triggers
- Utilize 20% Branching fraction
- Tag side is the muon and probe side is unbiased B decays
- Variable trigger threshold strategy to utilise spare L1 bandwidth and park data.
- Muon channel used tag-side of the BParking trigger
- Electron channel is done on the probe side.

μ	HLT trigger rate [kHz	SMS	• P	Parking •	Prompt Config. ch	ange 70 60 50 40 30	
Tag-side: b→µX		:00 07:00	09:00	11:00	13:00 Time	10 15:00 [UTC]	
	L1 p _T [GeV]	HLT p _T [GeV]	HLT IP _{sig}	\mathcal{L}_{int} [fb ⁻¹]	Mean PU	Events $[\times 10^9]$	
	12	12	sig 6	8.1	37.7	0.72	
Signal-side:	10	9	6	8.4	32.9	1.67	
unbiased	10	9	5	1.6	33.9	0.37	
b hadron	9	9	6	1.6	28.2	0.34	
decays	9	9	5	5.2	28.3	1.30	
	9	8	5	1.6	29.2	0.52	
	8	9	6	1.8	24.2	0.40	
	8	9	5	3.8	23.9	1.00	
	8	8	5	1.7	24.2	0.60	
	8	7	4	1.5	24.5	0.84	
	7	8	3	0.8	19.1	0.45	
	7	7	4	5.5	18.6	3.56	
	Other co	ombinations		0.3		0.12	
	Total			41.9	22.7	11.9	

2018 R_K Analysis

- The electron side (probe) decays were extremely soft because there was no kinematic requirement for the decay
- low-pt electron algorithm was created to aid in electron reconstruction
- Increased signal-yield by $\sim 50\%$
- R_{K} measurement is statistically limited due to electron side

Public Result Paper: <u>https://arxiv.org/abs/2401.07090</u>

Electron

Muon

Jay Odedra (ICL)

Run 3 Approach (2022)

Strategy

- New strategy needed to gather more electron side events
- Now trigger directly on the B Decay to di-electron final state
- Utilize spare L1 bandwidth during the end of fills and the ramp up period
- Should be able to improve number of candidates by a factor 10 w.r.t. Run 2

CMS motivation

- LHCb is currently the only experiment to have measured $R_{\rm K}$ with good precision and independent measurements are needed to corroborate their results
- Belle II will only be able to support/falsify by late 2020's (20/ab required for 5% stat)
- CMS may be able to have a precision measurement by the end of Run 3

Di-electron triggers

- ~ 2 billion events
 (33.9 /fb) have been collected by triggers
- Several resonances observed in dielectron mass spectra after loose offline selections applied
- Lower-threshold triggers crucial for low-q² region (1.1 < q²
 6.0 GeV²)

Analysis strategy

Run 3 Analysis (On going)

- Analysed the full 2022 data set and validated the Run 3 trigger strategy
- MC modelling, Trigger reweighting, Trigger Scale factors, Control Region checks, Analysis BDT, fitting procedure etc.
- Preliminary Blind Analysis has been conducted
- Initial results look very promising

nCandidates

Current/Future work

- Finalisation of Run 3 R_K analysis BDT
- Developing a more sophisticated fitting strategy
- 2023 dataset
 - 2023 Di-electron triggers collected 22.6 /fb of data
 - This data was collected at a higher PU and differing conditions
 - The previous studies and checks must be conducted on the 2023 data
- Impact of using Low-pt electron algorithm

Conclusions

- Successfully implemented new trigger strategy in Run 3
- Trigger studies and data set validation very mature
- First steps of R_K analysis complete, estimates of low-q2 suggest a successful outcome
- Preliminary analysis of 2022 complete, now tackling 2023
- Full R_{K} analysis well underway

Backup

L1 $E_{\rm T}$	L1 ΔR	HLT $E_{\rm T}$	\mathcal{L}_{int}	Mean	Peak L1	Peak HLT	2022 (13.6 TeV)
[GeV]		[GeV]	$[\mathrm{fb}^{-1}]$	PU	rate [kHz]	rate [kHz]	
11.0	0.6	6.5	1.6	45.6	2.2	0.1	
10.5	0.6	6.5	1.1	42.2	3.0	0.3	
9.0	0.7	6.0	8.8	47.4	9.3	0.6	
8.5	0.7	5.5	3.3	46.2	13	0.9	
8.0	0.7	5.0	6.9	39.1	16	1.2	
7.5	0.7	5.0	1.6	40.3	23	1.4	0.4
7.0	0.8	5.0	2.7	36.3	27	1.3	0.3
6.5	0.8	4.5	3.6	31.2	35	1.3	
6.0	0.8	4.0	2.5	27.4	46	1.4	
5.5	0.8	4.0	0.7	23.6	54	1.0	0.1
Other of	combinat	tions	1.0		—		
Total			33.9	34.8			m _{eeK} [GeV]

