

Search for $\Lambda_b^0 \to \Lambda(1520)\mu^{\pm}e^{\mp}$

Dan Thompson, Niladri Sahoo, Nigel Watson

(University of Birmingham)

IOP Joint APP, HEPP & NP Conference 2024

10/04/24

Motivation - $b \rightarrow s\ell^+\ell'^-$

- FCNC $b \rightarrow s\ell^+\ell^-$ loops suppressed in SM
 - $\mathcal{B}(\Lambda_b^0 \to pK\ell^+\ell^-) \approx 3 \times 10^{-7}$ [JHEP2020,40]
- Lepton Flavour Violation (LFV) only possible in SM via ν oscillation ($\mathcal{B} \sim \mathcal{O}(10^{-50})$)
- Detection of LFV clear signature of NP
- New Physics models in $b \rightarrow s\ell^+\ell^-$ naturally introduce LFV @ ~ 10^{-9} [PRL.114.091801]

Baryonic LFV with $\Lambda(1520)$

- Builds on recent interest in $\Lambda(1520)\ell\ell$ with $\Lambda(1520)\mu\mu$ BF and Angular analyses [PRL.131.151801] [E.VOLLE-THESIS]
- LFV studied in decays of *b*-mesons, no published searches in *b*-baryons. [PRL.123.241802]
- Search for $\Lambda_b^0 \rightarrow \Lambda(1520)\mu e$ with *b*-baryon complementary to *b*-meson searches.

Motivation - $b \rightarrow s\ell^+\ell'^-$

Λ_b^0 Candidates refined by Cut-Based + MVA Selection

- Topological selection + cut based vetoes of Background resonances $(\phi, D^0, J/\psi)$ and Semileptonic $X \to X' \ell \nu_{\ell}$ decays $(\Lambda_c^{(*)+}, D_s^{\pm})$ reduce background level significantly
- Remaining combinatorial component removed by MVA approach to draw on higher order correlations
 - Trained on $pK\mu^{\pm}e^{\mp}$ corrected simulation + **upper** sideband data with kinematic and topological Λ_b^0 , Λ^* and $\ell\ell$ variables
 - Further reduces background by 95% while retaining 90% of signal

Calculating $\mathcal{B}(\Lambda_{h}^{0} \to \Lambda(1520)\mu^{\pm}e^{+})$

High-statistics control mode $\Lambda^0_b o J/\psiig(o \mu^\pm\mu^\mpig)pK$ topologically similar to signal mode

10

Calculating $\mathcal{B}(\Lambda_h^0 \to \Lambda(1520)\mu^{\pm}e^{\mp})$

After Selection Chain Applied

High-statistics control mode $\Lambda_b^0 \to J/\psi (\to \mu^{\pm} \mu^{\mp}) pK$ topologically similar to signal mode

11

Data-Driven ε Corrections to Simulation

Simulation mis-modelling/reconstruction affects **efficiency measurements** ∴ correct MC with weights using **sWeighted data as "target"** for reweighting

Modelling Corrections

- Λ_b^0 Lifetime analytical correction
- M_{pK} "Pentaquark" Reweighting for control mode to correct M_{pK} distribution
- Correct Λ_b^0 production kinematics using **Gradient Boosted Reweighter**

Reconstruction Corrections

- MC PID selection replaced by weights from **PIDCalib2**
- Track efficiency corrected using weights from TrackCalib2
- **TISTOS** method to correct trigger efficiency using $B^+ o J/\psi K^+$

Split Analysis into Distinct Categories to calculate ε_{Signal} & $\varepsilon_{Control}$

- Detector, trigger and reco. differences at LHCb between run 1 and 2.
- Bremsstrahlung of electrons results in partialreconstruction of candidates
- Bespoke recovery algorithms reconstruct lost energy, but can over-reconstruct
- Significant difference in efficiency for Λ_b^0 selection with 0γ and 1γ
 - ∴ Split analysis into four categories:
 - Run 1 and 2
 - 0γ and 1γ

Category	Efficiency $(\times 10^{-5})$	
	Run 1	Run 2
$pK\mu^{\pm}e^{\mp} \ 0\gamma$	60.6 ± 0.5	51.0 ± 0.3
$pK\mu^{\pm}e^{\mp} 1\gamma$	69.7 ± 0.5	60.4 ± 0.3
$pK\mu^+\mu^-$	124.0 ± 0.8	99.8 ± 0.4

e

13

 $\begin{array}{l} N_{Control} \colon \text{Fits to} \\ \Lambda_b^0 \to J/\psi \big(\to \mu^\pm \mu^\mp \big) p K \end{array} \end{array}$

Selection aligned for Control mode

- Fit in Run 1/Run 2 with signal shape parameters from corr. MC fit
- Simple 2nd order Chebyshev + signal describes remaining data distribution effectively

 $\Lambda_b^0 \rightarrow J/\psi p K$ Run 1 & 2 Yield = 24500 ± 200

$\Lambda_b^0 \to p K \mu^{\pm} e^{\mp}$ Full Selection MC Fits

• Double-sided Crystal ball fit to fully corrected $\Lambda_b^0 \rightarrow \Lambda(1520)(\rightarrow pK)\mu^{\pm}e^{\mp}$ simulation

Bremsstrahlung causes major difference in signal shape -> Further justifying fitting in different categories

 $\Lambda_h^0 \rightarrow p K \mu e$ Data after Full Selection

 $\Lambda_h^0 \to p K \mu^{\pm} e^{\mp}$ Data Fits

Blinded Data Fit Procedure

- Combinatorial with O(3) Chebyshev using fixed parameters from μeSS proxy dataset fits at looser WP
- Exclusive BG component(s) with fitted with <u>JohnsonSU</u> (next slide)

Exclusive Background Components

Use Data Driven Technique to monitor exclusive backgrounds

 $N_{normalised}^{BG} = \varepsilon_{BG} \cdot \mathcal{B}_{BG} \cdot \frac{N_{Control}}{\mathcal{B}_{Control} \cdot \varepsilon_{Control}}$

- Corrected ε_{BG} from selection chain
- $N_{Control}$ from $J/\psi pK$ fits

Full Coverage of diff. background types: 42 samples covering

• $h - \ell$ Mis-ID

•
$$\ell - \ell'$$
 Mis-ID

- $N_{/cat} \approx 0$
- ℓ from $X \to X' \ell \nu_{\ell}$
- $\ell \ell'$ from Double Semileptonic
- Only significant background w/ $N_{/cat} \approx 3$

 $\Lambda^0_b \to D^0(\to K\ell^+\nu_\ell)p\ell'^-\overline{\nu}_{\ell'}$

Summary

Search for LFV in $\Lambda_b^0 \to \Lambda(1520) (\to pK) \mu^{\pm} e^{\mp}$

- Analysis is significantly advanced
- Comprehensive set of background samples prepared and studied
- Extensive simulation correction chain using data-driven techniques
- Initial Single Event Sensitivity Test:
 - $\mathcal{B}(\Lambda_b^0 \to \Lambda(1520)\mu^{\pm}e^{\mp}) \approx 6 \times 10^{-9}$
 - Final limit setting using GammaCombo planned
- Final result will be world-first measurement/limit of this mode

