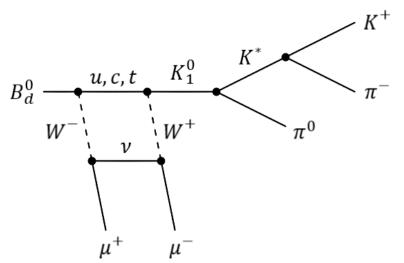

Search for Right-Handed Weak Decays with $B_d^0 \rightarrow K_1^0 \mu^+ \mu^-$

10/04/2024

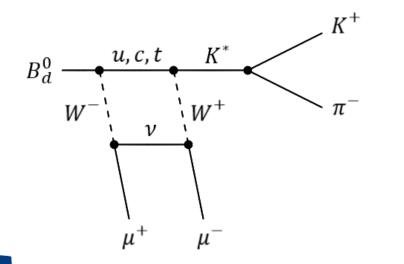
James Brown

Motivation

- Standard Model Weak interactions only couple to lefthanded particles (or right-handed antiparticles).
- No specific theoretical reason for this, falls out of surrounding theory and has agreed with observation.
- Right-handed weak decays may exist but are 'drowned out' by existing Standard Model left-handed decays.
- Past searches have limited sensitivity and set constraints.
- Parity Doubling Comparing two decay channels with parity degenerate states, amplitudes come with a relative minus sign and effectively cancel out left-handed contributions.

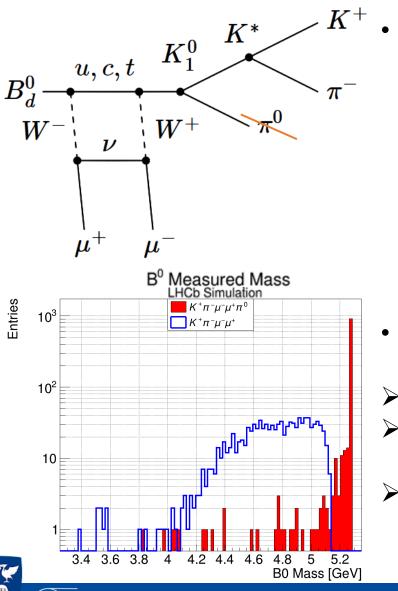

Slide 2

• Very sensitive search for right-handed contributions.



Decay Channel & Aims

- Flavour changing neutral current (FCNC) Standard Model rare interactions that are forbidden at tree level, proceed only through boxes & loops and highly suppressed by the GIM mechanism.
- FCNC Effective couplings are very well predicted, deviations from the Standard Model are easy to see.
- The primary aim is discovering the decay. Then making a measurement of its branching fraction via:

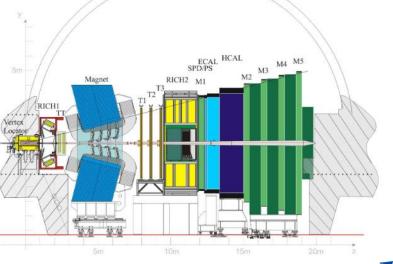


10/04/2024

$$\mathbf{R} = \frac{\mathbf{\mathcal{B}}_{B^0 \to J/\psi K_1^0}}{\mathbf{\mathcal{B}}_{B^0 \to J/\psi K^*}}$$

- The K_1^0 and K^* states are (almost) parity-degenerate states, they have the same spin but opposite parity.
- Aim to use these channels to investigate the relative contributions of left- and right-handed weak currents in B decays.

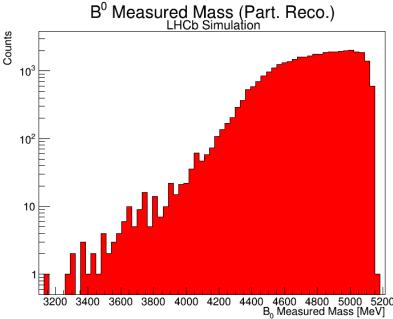
Partial Reconstruction


10/04/2024

- Analysis of the first MC samples indicated a full reconstruction (including the π^0) was not viable for multiple reasons.
 - > π^0 reconstruction efficiency is very low (average ~3.7 %) compared to charged tracks (average ~70+%).

Slide 4

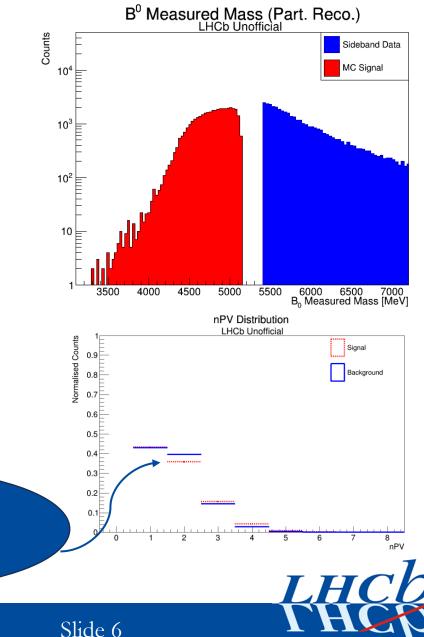
> Very busy hadronic event and limited π^0 reconstruction information produces a large combinatorial background.


- Partial reconstruction results in:
- A significantly wider signal region.
- More than an order of magnitude increase in found signal events.
- Very few combinatoric background events.

Triggers & Candidate Selection

- Analysis will use all Run 2 data, currently working with the 2016 data.
- Developed a trigger for the Run 2 software trigger which filters previous LHCb data (2016, 2017, 2018) for new channels/analyses.
- Also developed a trigger for Run-3 data collection this year and beyond, planning for data collection well beyond the current analysis.
- Both triggers were optimised using an MC generated signal sample and minimum bias for the best signal efficiency.
- Triggers feature tighter particle identification selections than similar analyses to reduce the increased rate from the required wider mass window.
- Events required to pass the Muon, Dimuon or Hadron hardware triggers.
- The analysis will be unblinded since the decay is partially reconstructed.

10/04/2024

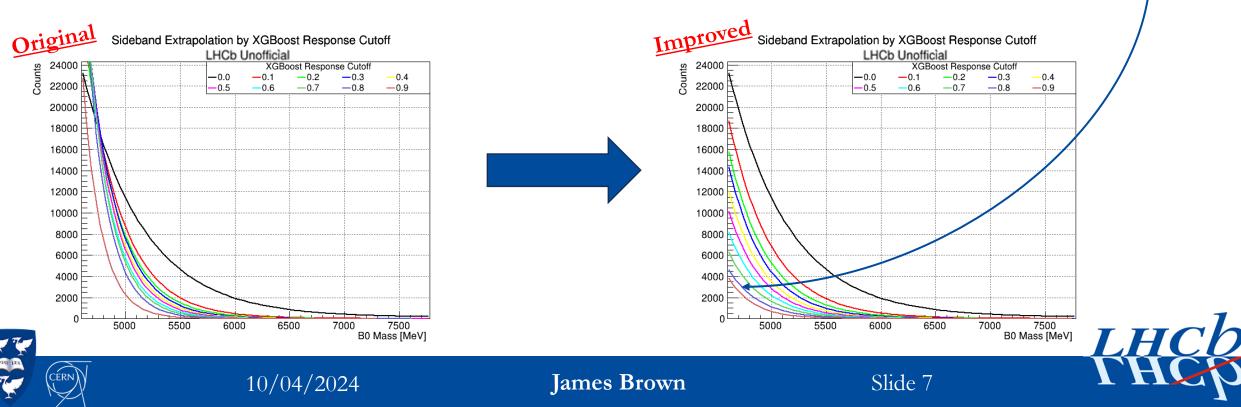

James Brown

MVA - Overview

- An XGBoost Classifier is trained to reduce the combinatorial background.
- Inputs are sideband data (m_{B_0} > 5400 MeV) as a background proxy and truth matched MC signal events are used as a signal proxy.
- Weight corrections account for differences between data and simulation (e.g. number of primary vertices).
- Input variables are selected based on previous related analyses choices and visual separation.

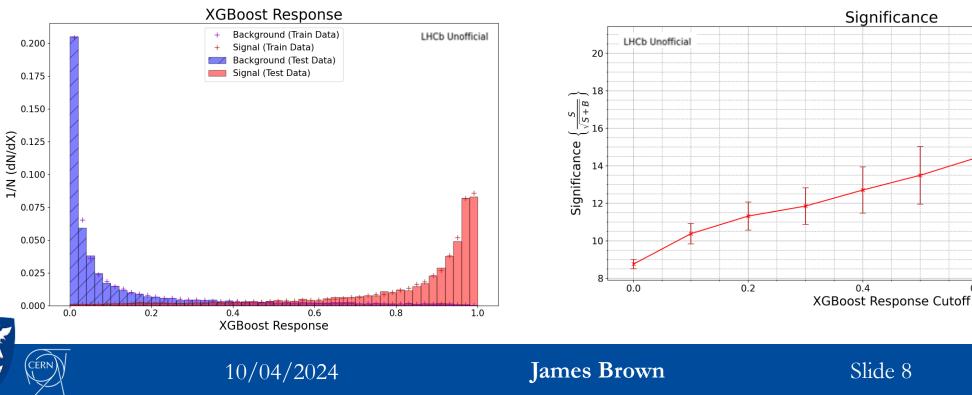
10/04/2024

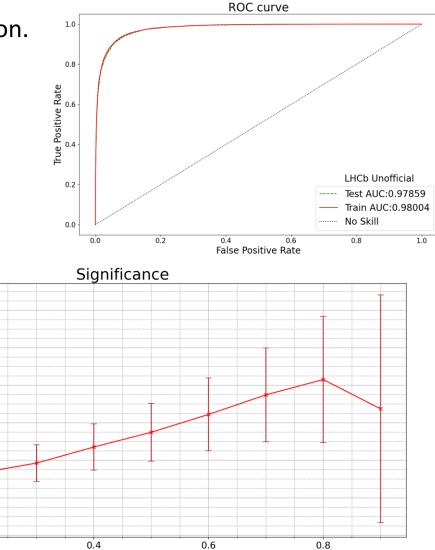
Differences between simulation and background proxies.


MVA – Variable Selection

Increased

discrimination at


lower mass.


- Variables with high discriminating power that are used in similar analyses introduce a bias into the classifier that reduces the background rejection in the lower mass regions.
- \succ Increased weighting on background events with a lower B^0 mass.
- > Removing specific input B^0 variables (e.g. p_T , Vertex χ^2).
- Result is increased discrimination at lower masses. Needs more investigation.

MVA – Current Status

- MVA is now successful in reducing combinatorics in the signal region.
- Current significance estimate at this stage is promising for next analysis steps.
- Investigating how to exploit powerful (but potentially biased) variables.



<u>Outlook</u>

- While partial reconstruction of the channel is required it introduces many challenges.
- Selections for data collection across Run 2 and Run 3 completed.
- Investigating the XGBoost mass bias and any further improvements that can be made.
- 2017 & 2018 data processing underway.
- Starting background sample generation and fitting.
- Signal region lies in the partially reconstructed shoulder of the B⁰ peak, the variety of decay channels here will present a challenge in the fitting.
- Future analysis can benefit from the Run-3 trigger providing larger data samples.

10/04/2024

James Brown

Slide 10

LHCD THCD

<u>Selections – Run 2 (Restrip)</u>

- Optimised using a 10k MC sample and a ~250k minimum bias sample.
- Currently developing the analysis with the 2016 MU data.
- Selection Efficiency ~ 33% for signal with 100% background rejection on the (small) sample.

Candidate	$B^0 o K^* \mu^+ \mu^-$ (Stripping 2016)	$B^0 o J/\psi \ K_1^0$ (Restripping)	Candidate	$B^0 o K^* \mu^+ \mu^-$ (Stripping 2016)	$B^0 o J/\psi \ K_1^0$ (Restripping)
B_d^0	IP χ2 < 16	IP χ2 < 100	All Tracks	Ghost Prob. < 0.5	Ghost Prob. < 0.4
	4800 MeV < M < 7100 MeV	2779.64 MeV < M < 7779.64 MeV			<i>P_T</i> > 300 MeV
	$\cos(\theta_{DIRA}) > 0.9999$	$Cos(\theta_{DIRA}) > 0.9995$			TRCHI2 < 4
	Flight Distance χ2 > 121	Flight Distance χ2 > 100		Min IP χ2 > 6	Min IP χ2 >4
	Vertex χ2/ndf < 8	Vertex χ2/ndf < 9	Hadrons		$K^+_{ProbNN(K)} > 0.4$
Mu Mu / <i>J/ψ</i>	M(μ+μ–) < 7100 MeV	1000 MeV < M(J/ψ) < 9000 MeV			$\pi^{-}_{ProbNN(\pi)} > 0.4$
	Vertex χ2/ndf < 9	Vertex χ2/ndf < 9		Min IP χ2 > 9	Min IP χ2 > 4
K*(892)	M < 6200 MeV	700 MeV < M < 1100 MeV	Muons	IsMuon	IsMuon & HasMuon
	Vertex χ2/ndf < 8	Vertex χ2/ndf < 9		DLLμπ > -3	$\mu^{+/-}_{ProbNN(\mu)} > 0.4$
	Flight Distance χ2 > 16				$\mu^{+/-}_{ProbNN(\pi)} < 0.95$
		${K^*}_{P_T}$ > 800 MeV	GEC	SPD Mult. < 600	SPD Mult. < 600

10/04/2024

James Brown

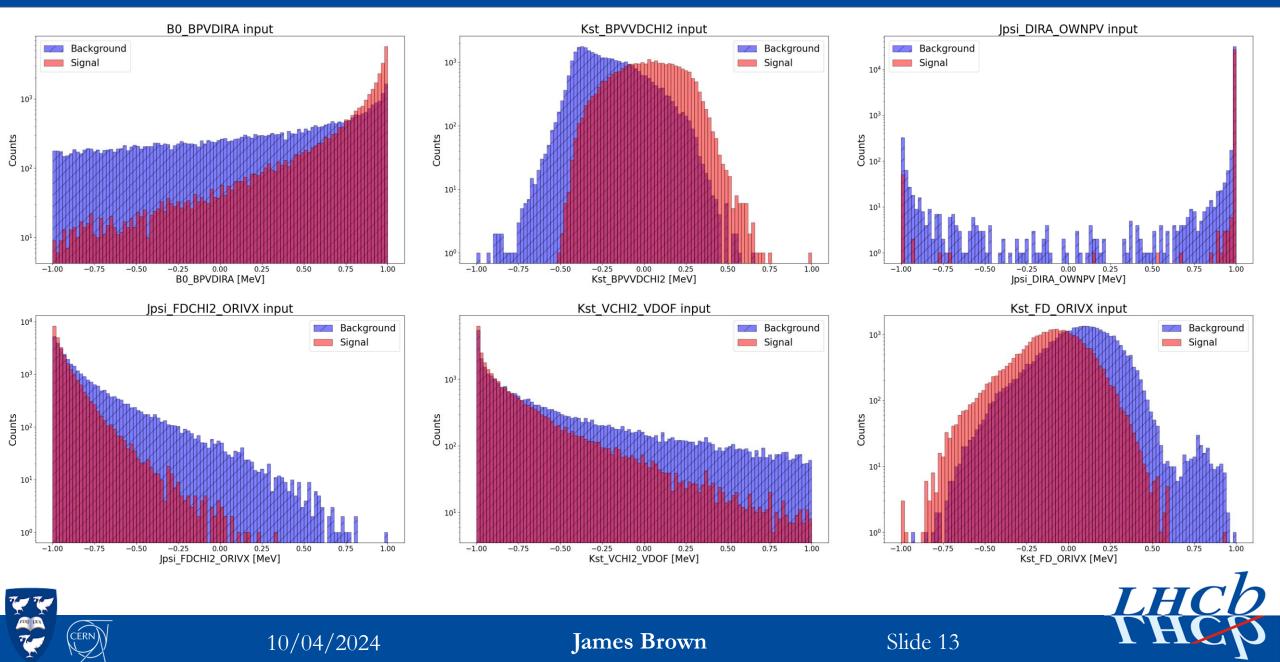
[All relevant values in MeV]

Selections – Run 3 Trigger

Candidate	$B^0 o J/\psi~K^*$ (Run 3)	$B^0 o J/\psi \ K_1^0$ (Run 3)	С	
	4500 < M < 7000	3000 < M < 6500		
	$P_T > 0$	<i>P_T</i> > 500		
B_d^0	Cos(θ _{DIRA}) > 0.9995	0.9995 $\cos(\theta_{DIRA}) > 0.9995$		
	Flight Distance χ2 > 16	Flight Distance χ2 > 100		
	Vertex χ2/ndf < 36	Vertex χ2/ndf < 7		
	(BPV) IP χ2 < 36	(BPV) IP χ2 < 50		
	0 < M < 5500	210 < M < 4430		
	$P_T > 0$ $P_T > 0$			
J/ψ	ADOCA χ2 < 36	ADOCA χ2 < 9		
	Separation $\chi 2 > 4$	Separation $\chi 2 > 4$ Separation $\chi 2 > 100$		
	Vertex χ2/ndf < 25	Vertex χ2/ndf < 9		
	0 < M < 2600	800 < M < 1000		
	$K^{*}{}_{P_{T}} > 400$	<i>K</i> [*] _{<i>P_T</i>} > 500	•	
K*(892)	ADOCA χ2 < 36	ADOCA χ2 < 9	•	
	(BPV) IP χ2 > 4			
	Vertex χ2/ndf < 25	Vertex χ2/ndf < 9		

Candidate	$B^0 o J/\psi~K^*$ (Run 3)	$B^0 o J/\psi \ K_1^0$ (Run 3)	
	$K^{+}{}_{P} > 1000$	<i>P</i> > 2000	
Hadrons	π^{-}_{P} > 2000		
	<i>P_T</i> > 250	$K^{+}{}_{P_{T}} > 250$	
		$\pi^{-}_{P_{T}} > 100$	
	Min IP χ2 > 4	Min IP χ2 > 10	
	$\pi^{-}_{PID(K)} < 4$	$\pi^{-}_{PID(K)} < 0$	
	$K^+_{PID(K)} > -4$	$K^+_{PID(K)} > 0$	
	<i>P</i> > 0	<i>P</i> > 4000	
	<i>P_T</i> > 350	<i>P_T</i> > 400	
Muons	$\mu^{+/-}_{PID(\mu)} > -4$	$\mu^{+/-}{}_{PID(\mu)} > -4$	
	Min IP χ2 > 4	Min IP χ2 > 12	

- Implemented ready for data taking this year.
- Hoping to include some Run 3 data in this analysis.


LHCD

10/04/2024

James Brown

MVA Input Variables Example

