Measuring R_{κ} at high q^2

James Herd

IoP HEPP & APP Annual Conference 2024

Imperial College London

Rare B meson decays

- Decay of **B** meson into a **kaon** and **two leptons** heavily suppressed in the SM
- New physics contributions may alter characteristics of final state particles
- Lepton flavour universality predicts $BF(B^+ \rightarrow K^+ \mu^+ \mu^-) = BF(B^+ \rightarrow K^+ e^+ e^-)$ with negligible theory uncertainty
- \Box Indirectly search for new physics by measuring R_{κ}
- Any significant deviation from unity would hint at new physics

Why high q^2 ?

- Dilepton invariant mass squared (q^2) spectrum of **B** \rightarrow **KII** includes resonant peaks \rightarrow no sensitivity to NP
- □ R_{κ} in the resonant free region 1.1 < q^2 < 6.0 GeV²/c⁴ has previously been measured by LHCb and found to be consistent with SM expectation
- \Box Currently no competitive measurement in the **high** q^2 region above the charmonium resonances

LHCb experiment

Two final states differ by presence of electrons or muons in final state

Muons

- $\Box \qquad \text{Minimum ionising} \rightarrow \text{penetrate through to muon chambers}$
- Good trigger efficiency & resolution

Electrons

- Produce EM shower in ECAL
- Radiate bremsstrahlung radiation
 - Poor momentum resolution
 - Poor trigger efficiency

$B \rightarrow K^+ \Psi(2S)(\rightarrow e^+ e^-)$ background

- □ Incorrect bremsstrahlung recovery leads $B^+ \rightarrow K^+ \Psi(2S)(\rightarrow e^+e^-)$ to leak upwards in q^2
- □ A cut on $q_{no brem}^2$ is incredibly efficient at removing $\Psi(2S)$ leakage backgrounds
- □ Signal efficiency reduced by 50% relative to an equivalent cut on q^2
 - Toy studies show that increased signal purity outweighs reduced signal yield

Measuring R_{κ} as a double ratio

- \Box Naive extraction of R_{κ} would use a single ratio
- Efficiency related systematic between electrons and muons do not cancel
- $\square \quad \mathbf{R}_{\mathbf{k}} \text{ far more robust against efficiency related} \\ \text{systematics when measured as a double ratio}$

$$R_{K} = \frac{N(K^{+}\mu^{+}\mu^{-})}{N(K^{+}e^{+}e^{-})} = \frac{n(K^{+}\mu^{+}\mu^{-})}{\epsilon(K^{+}\mu^{+}\mu^{-})} \xrightarrow{\epsilon(K^{+}e^{+}e^{-})} \quad \leftarrow \text{Single ratio}$$

Double ratio $\rightarrow \qquad R_{K} = \frac{N(K^{+}\mu^{+}\mu^{-})}{\epsilon(K^{+}\mu^{+}\mu^{-})} \xrightarrow{\epsilon(K^{+}e^{+}e^{-})}{N(K^{+}e^{+}e^{-})} \xrightarrow{\epsilon(K^{+}J/\psi(\mu^{+}\mu^{-}))}{N(K^{+}J/\psi(\mu^{+}\mu^{-}))} \xrightarrow{\epsilon(K^{+}J/\psi(e^{+}e^{-}))}{\epsilon(K^{+}J/\psi(e^{+}e^{-}))}$

Extracting $B \rightarrow Kee$ yield & toys

- □ Precision of R_{κ} is limited by observed yield of $B^+ \rightarrow K^+ e^- e^-$ decays
- **Q** Yield is extracted by fit to invariant mass $m(K^+e^+e^-)$
- Three main backgrounds contribute to the fit
 - Combinatorial (random combination of three tracks)
 - 2. Partially reconstructed decays i.e $B \rightarrow K^*(K\pi)ee$
 - 3. Hadron→electron mis-ID i.e $B \rightarrow K\pi\pi$

Boosted decision trees

- □ Two largest backgrounds in $B^+ \rightarrow K^+ e^+ e^-$ channel are combinatorial and partially reconstructed events
- Train two boosted decision tree classifiers
 targeted to suppress each background type
- Working point of the two BDTs are optimised simultaneously in toys fits

Combinatorial shape

- High *q*² requirement imposes phase-space restriction on combinatorial events
 - **Cannot be modelled by simple exponential**
 - Use custom single-parameter model that takes into account phase-space boundary
 - **G** Fold in resolution effects & efficiency dependence of selection cuts
- Validate model by comparing to side band data

$\textbf{Hadron} \rightarrow \textbf{electron} \ \textbf{misidentified} \ \textbf{background}$

- □ Three sources of mis-identified backgrounds
 - $\Box \qquad B^* \rightarrow K^* \pi^* \pi^-$
 - $\Box \qquad B^+ \rightarrow K^+ K^+ K^-$
 - Residual mis-ID

- Suppress by applying particle identification criteria using information from LHCb sub-detectors
- Model for surviving mis-ID events derived using data-driven method known as pass/fail [Phys. Rev. D 108, 032002]
 - Produce sample enriched in mis-ID by inverting PID criteria
 - Extrapolate inverted PID data into nominal PID region using "transfer weights"

Cross-checks using resonant channels

- Efficiencies derived from simulation may be biased due to mis-modelling
 - □ Double ratio helps make R_{κ} robust against efficiency biases
 - □ Additionally, simulation is corrected using $B^+ \rightarrow J/\Psi K^+$ control data
- \Box Check control of efficiencies by measuring $r_{J/\psi}$ single ratio
 - $\label{eq:single-sing$
 - $\Box \quad \mathbf{r}_{J/\Psi} \text{ consistent with unity } \rightarrow \text{ excellent control of efficiencies}$

 $r_{J/\psi} = \frac{\mathcal{B}(B^+ \to K^+ J/\psi(\mu^+ \mu^-))}{\mathcal{B}(B^+ \to K^+ J/\psi(e^+ e^-))}$

Conclusions

- **D** Measuring \mathbf{R}_{κ} at high q^2 is a further test of LFU in rare **B** decays
 - Using full Run 1 & Run 2 LHC data sample
- Selection strategy results in a high signal purity
- **L** Expected statistical + systematic R_{κ} precision of ~8%
- □ Analysis is currently in review
- \Box R_{κ} is statistically limited by sample size \rightarrow Run 3 and beyond data will enhance measurement

Thank you for listening!