Amplitude Analysis of $B^0 \rightarrow D^0 \overline{D^0} K^+ \pi^-$ IOP Joint APP, HEPP and NP Conference 2024

¹Jake Amey, ¹Kostas Petridis, ¹Jonas Rademacker, ²Mark Whitehead

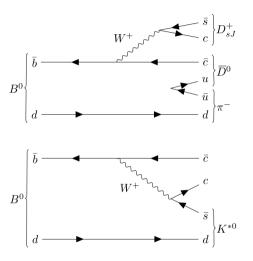
 $^1 \text{University}$ of Bristol, $^2 \text{University}$ of Glasgow

10/04/24

Amplitude Analysis of $B^0 \rightarrow D^0 \bar{D^0} K^+ \pi^-$

The $B^0 ightarrow D^0 ar{D^0} K^+ \pi^-$ decay

- It is a favoured $b \rightarrow cW^-(\rightarrow \bar{c}s)$ transition due to V_{cb} being relatively large.
- Either 'external' or 'internal' W emission.
- Rare charm-strange states can appear in external case.
- "Charm loops" can be studied in internal case and charmonium exotics may also be present.

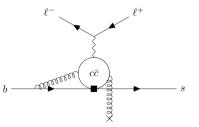


2 / 13

Motivations: exotics and charm loops

- Studying the amplitudes in the $D^0 \overline{D^0}$ system can help us understand exotic states (non- $q\overline{q}, qqq$) above the open-charm threshold ($s > 4m_D^2$).
 - e.g. tetraquarks $(q\bar{q}q\bar{q})$ like $Z_c(4430)^-$, may be present in $D^0\bar{D^0}\pi$ system¹.
- Can also study rare Charmonium $(c\bar{c})$ and charm-strange states $(c\bar{s})$ e.g. $\chi_{c(0,2)}(3930) \rightarrow D^0 \bar{D^0}$.

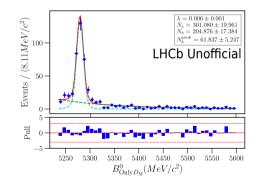
 Studying the D⁰D
⁰ system can provide information on charm contibutions mimicking new physics in b → sℓℓ measurements.



¹arXiv:1404.1903

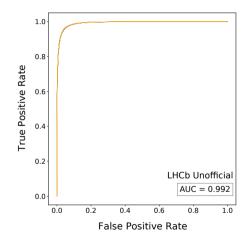
Selections - overview

- D^0 candidates reconstructed from either $K\pi$ or $K\pi\pi\pi$.
- Cut-based selections on particle identification, kinematic, and mass variables to remove combinatorial and peaking backgrounds.
 - Kinematic refit performed on final state particles to improve B^0 mass resolution.
 - D⁰ candidates constrained to their known mass and originate from the B⁰ candidate decay vertex.
 - MVA used to suppress combinatorial backgrounds.
 - Resulting yield: roughly 1400 signal and 300 background candidates within 35 *MeV* of the B⁰ known mass.



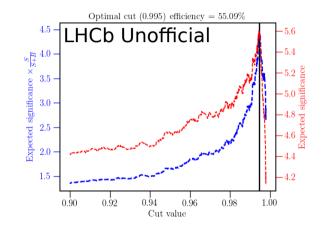
4 / 13

- Two-stage fully connected feed-forward NN, first stage feeds into second.
- First stage: trained on kinematic and topological variables related to D^0 candidates and their child particles.
- Second stage: trained on previous stage output and kinematic and topological variables independent of m(Kπ).



Selections - MVA optimisation

- Cuts are placed on NN output, position of cut optimised by maximising a combination of expected signal purity and significance.
- Purity estimated from fits to a control mode $B^0 \rightarrow D^{*-}D^0K^+$ peak and extrapolating an exponential background fit to the signal upper mass sideband.



Amplitude analysis - model

- This decay is 4-body, so phasespace is 5-dimensional. We are free to choose from invariant mass or angular distributions.
- Using Isobar model, full amplitude written as coherent sum of components:

$$\mathcal{P}(x) = |\mathcal{M}|^2 = \left|\sum_r c_r \mathcal{A}_r(x)\right|^2 \tag{1}$$

• Using helicity formalism, and considering our initial and final state particles are spin-0, the amplitude for a given $B^0 \to (R \to ab)(R' \to cd)$ decay is:

$$\mathcal{A}_{B} \propto \sum_{\lambda=-J_{R'}}^{J_{R'}} \mathcal{H}_{\lambda_{R}\lambda_{R'}} \times F_{R}(\mathbf{x}) D_{\lambda,0}^{J_{R}}(\Omega_{R}) \times F_{R'}(\mathbf{x}) D_{\lambda,0}^{J_{R'}}(\Omega_{R'})$$
(2)

• here $\mathcal{H}_{\lambda_R\lambda_{R'}}$ is the helicity coupling, $F_R(x)$ describes the lineshape, and $D_{\lambda,0}^{J_R}(\Omega_R)$ is the relevant Wigner-D function for a contribution with spin J_R and decay product helicities λ . Ω_R contains angular information.

Jake Amey

Amplitude analysis - likelihood

• Our total likelihood is:

$$\mathcal{L} = \prod_{x_i} \frac{\varepsilon(x_i)\phi(x_i)\mathcal{P}(x_i)}{\int \varepsilon(x)\phi(x)\mathcal{P}(x)dx}$$
(3)

- where ε(x_i) is the efficiency and φ(x_i) is the phasespace density, since we deal with the log-likelihood, these terms in the numerator factorise out.
- For integration events generated using a signal model $\mathcal{P}'(x)$ and selected using the same criteria as the data, we can approximate:

$$\int \varepsilon(x)\phi(x)\mathcal{P}(x)dx \approx \frac{1}{N}\sum_{i=0}^{N}\frac{\mathcal{P}(x_i)}{\mathcal{P}'(x_i)} \pm \mathcal{O}(N^{-0.5})$$
(4)

• So we can include the efficiency in the normalisation sample for the fit.

Amplitude analysis - background term

• We model background by incoherent addition of a background term to the likelihood, such that the likelihood becomes:

$$\mathcal{L} = \prod_{x_i} f_s \frac{\varepsilon(x_i)\phi(x_i)\mathcal{P}(x_i)}{\int \varepsilon(x)\phi(x)\mathcal{P}(x)dx} + (1 - f_s)\varepsilon(x_i)\phi(x_i)b(x_i)$$
(5)

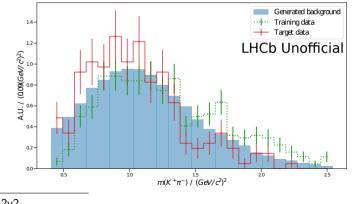
• as before, $\varepsilon(x_i)\phi(x_i)$ factorise out, and $b(x_i)$ is defined as:

$$b(x_i) = w(x_i)\mathcal{P}'(x_i) \tag{6}$$

 where w(x_i) is calculated using a BDT to weight the normalisation sample to a background sample generated with a NN

Background modelling

- Background sample generated by training a NN on the B⁰ candidate mass and five invariant mass projections from the upper mass sideband¹.
- The model learns the background shape and extrapolates it into the signal region.



¹arXiv:1902.01452v2

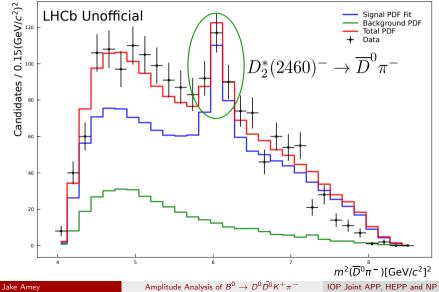
Jake Amey

Amplitude fit and baseline model

Perform simultaneous unbinned maximum-likelihood fit across 12 data categories, including full Run I and Run II dataset. Construct baseline model and build on it by sequentially adding resonances and assessing the likelihood plus some penalty term to penalise complex models:

-	
Nonresonant S-wave $ ightarrow D^0 \overline{D}^0$	${K^st}(892) o {K^+} \pi^-$
ψ (3770) $ ightarrow D^0 \overline{D}^0$	S-wave $ ightarrow {\cal K}^+\pi^-$
ψ (3770) $ ightarrow D^0 \overline{D}^0$	$K^*(892) o K^+ \pi^-$
ψ (4040) $ ightarrow D^0 \overline{D}^0$	${K^*}(892) o {K^+} \pi^-$
ψ (4160) $ ightarrow D^0 \overline{D}^0$	${K^*}(892) o {K^+} \pi^-$
ψ (4230) $ ightarrow D^0 \overline{D}^0$	K^* (892) $ ightarrow K^+\pi^-$
ψ (4360) $ ightarrow D^0 \overline{D}^0$	${K^*}(892) o {K^+} \pi^-$
ψ (4415) $ ightarrow D^0 \overline{D}^0$	${K^*}(892) o {K^+} \pi^-$
$\chi_{c2}(2P) o D^0 \overline{D}^0$	S-wave $ ightarrow {\cal K}^+\pi^-$
$\chi_{c2}(2P) o D^0 \overline{D}^0$	${K^st}(892) o {K^+} \pi^-$
$\chi_{c0}(3860) o D^0 \overline{D}^0$	${K^st}(892) o {K^+} \pi^-$
$D_2^*(2460)^- o \overline{D}^0 \pi^-$	$D_{s2}(2573)^+ ightarrow D^0 K^+$

Initial fit to data



12 / 13 IOP Joint APP, HEPP and NP Conf. 24

Summary

- An amplitude analysis of $B^0 \rightarrow D^0 \overline{D^0} K^+ \pi^-$ is being performed, to study charm-loop contributions and exotic states.
- Currently at the stage of refining the amplitude model.
- Fit results of amplitude parameters, particularly for the nonresonant S-wave $\rightarrow D^0 \overline{D}^0 \& K^*(892) \rightarrow K^+ \pi^-$, and resonance parameters such as width or mass for lesser-known resonances, will be final results.
- Statistically limited measurement, improved further by Run 3 datasets and beyond.
- We expect the dominant systematic to be the background model in the process of evaluating

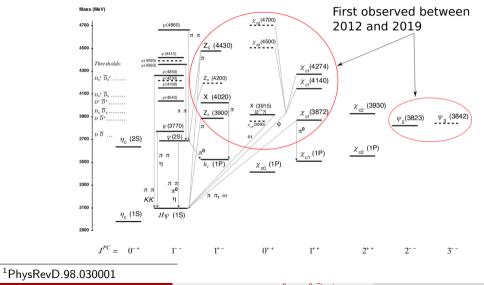
Backup

Motivations - detailed

- Can investigate exotic states above the open-charm threshold ($s > 4m_D^2$) using $D^0 \bar{D^0}$
 - Such as $Z_c(4430)^-$ (or $T_{s/1}^b(4430)^1$, determined to have a minimal $c\bar{c}d\bar{u}$ quark content (tetraquark)²
- Could also study charmonium or charm-strange states such as:
 - $\chi_{c(0,2)}(3930) \rightarrow D^0 \bar{D^0}$
 - $D^{**+} \rightarrow D^0 K^+$
- Charm loops mimic a q^2 -dependent contribution to Wilson coefficient c_0 with large theoretical uncertainties at high q^2
 - Uncertainties due to non-perturbative effects
 - Can put constraints on such charm loop effects by direct study of charm resonances in $b \rightarrow sc\bar{c}^3$

¹arXiv:2206.15233 ²arXiv:1404.1903 ³arXiv[.]1006 4945

Charm exotics

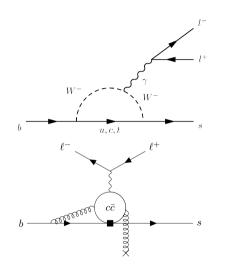


Jake Amey

Amplitude Analysis of $B^0 o D^0 ar{D^0} {K^+} {\pi^-}$

IOP Joint APP, HEPP and NP Conf. 24 3 / 18

Charm loops



- b → sℓ⁺ℓ⁻ transitions are important examples of highly supressed FCNC processes.
 - For example, $B^0 \rightarrow K_0^* \mu^+ \mu^-$ considered a 'golden mode'(rigourous test of SM predictions)
- These can be described by an effective field theory:

$$\mathcal{H}_{eff} = -rac{4}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i=1}^{10} \mathcal{C}_i \mathcal{O}_i$$

- Charm loops contribute to $b o s \ell^+ \ell^-$
 - Mimic q^2 dependent contribution to C_9 (γ coupling to $\ell^+\ell^-$)
 - Non-factorisable \rightarrow non-perturbative effects \rightarrow theoretical uncertainties at high q^2

• The matrix element describing non-local charm contributions can be expressed as: $M = 2l(0) + c^2 \left[\sum_{i=1}^{\infty} (RW_i) + \int_{-\infty}^{\infty} \frac{\rho(s)}{\sigma} ds \right]$

$$\mathcal{M} = \mathcal{H}(0) + q^2 \left[\sum_{J/\psi, \psi(2S), \dots} (BW) + \int_{4m_D^2}^{\infty} rac{
ho(s)}{s(s-q^2-i\epsilon)} ds
ight]$$

- 1st term is the isolated loop, 2nd term is sum of resonant states, final term is broad charm resonances & continuum states (dispersion relation)
- In the final term, the spectral density $(\rho(s))$ is unconstrained.
- Direct measurement of charm resonances in $b \to sc\bar{c}$ can put constraints on $\rho(s)$ e.g. through amplitude analysis of $B^0 \to D^0 \bar{D^0} K \pi$

Analysis Strategy Overview

- $B^0 \rightarrow D^{*-}D^0K^+$ utilised as a control mode (like in branching fraction measurement).
- For signal mode, D^0 candidates are reconstructed from either $K^+\pi^-$ or $K^+\pi^-\pi^-\pi^+$ (excluding cases where both D^0 mesons decay into $K^+\pi^-\pi^-\pi^+$).
 - ${\cal K}^+$ and π^- candidates from ${\cal K}^{*0}$ meson, with ${\it m}({\cal K}^{*0}) < 1600~{
 m MeV}$
- Kinematic refit performed with DecayTreeFitter.
- Neural Network utilised to reduce combinatorial background.
- Use Run I (11-12) and Run II samples (16-18)
 - *K*π MC 11196099, 11196011
 - K3π MC 11198099, 11198012 (redecay, no 2011 sample)

Stripping and Trigger Selections

- Stripping 21r1, 21, 28r2, 29r2, 34 (BHADRON stream):
 - Both D^0 mesons decay to $K\pi$: B02D0D0KstD02HHD02HHBeauty2CharmLine
 - One D^0 meson decays to $K3\pi$: B02D0D0KstD02HHD02K3PiBeauty2CharmLine
- Triggers:
 - L0:
 - TOS: LOHadronDecision $TOS(K_{D^0})$ & LOHadronDecision $TOS(\pi_{D^0})$ & LOHadronDecision $TOS(K_{\bar{D^0}})$ & LOHadronDecision $TOS(\pi_{\bar{D^0}})$ & LOHadronDecision $TOS(K_{K^{*0}})$
 - TIS: (LOHadronDecision TIS(B⁰) || LOMuonDecision TIS(B⁰)) & !LOHadronDecision TOS(B⁰)
 - HLT1:
 - Run I: Hlt1TrackAllLODecision TOS(B⁰)
 - Runll: Hlt1TrackMVADecision $TOS(B^0)$ & Hlt1TwoTrackMVADecision $TOS(B^0)$
 - HLT2:
 - Run I: Hlt2Topo{2,3,4}BodyBBDTDecision TOS(B^0)
 - Run II: Hlt2Topo{2,3,4}BodyDecision TOS(B^0)

Preselections

	Offline Selection cuts	
	$ t B0_OnlyD_M \ \& \ B0_BandDs_M > 0$	
Offline cuts	$\texttt{Kst0}_\texttt{M} < 1600$	
carried over	${\tt B0_D0_decayLength/B0_D0_decayLengthErr} > 0$	
from BF	${\tt B0_D0bar_decayLength/B0_D0bar_decayLengthErr} > 0$	
analysis	$\ \texttt{D0_M}{-}m_{PDG}(D^0)\ < 30$	
	$\ \texttt{DObar}_\texttt{M}{-}m_{PDG}(D^0)\ < 30$	
Tighter outs	$\texttt{Pi_Kst0_PIDK} < 10$	
	$\texttt{K_Kst0_PIDK} > -10$	
Tighter cuts for	$BO_ENDVERTEX_Z < DO_ENDVERTEX_Z$	
combinatorial background	${\tt BO_ENDVERTEX_Z} < {\tt DObar_ENDVERTEX_Z}$	
	$\tt K_Kst0_ProbNNK > 0.2$	
	$\tt K_DO_ProbNNK > 0.2$	
	K_DObar_ProbNNK > 0.2	

• Signal and control mode separated by selection (based on fitted D^{*-} reconstructed mass peak width):

$$|m(D^0_{fromD^*}\pi^-) - m(D^0_{fromD^*}) - [m_{PDG}(D^{*-}) - m_{PDG}(D^0)]| < (4 imes 0.724) MeV/c^2$$

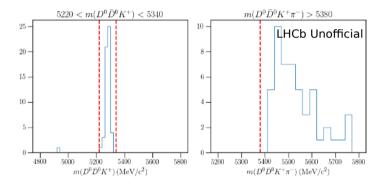
- DecayTreeFitter used to improve the B^0 mass resolution
 - Constrains the B^0 meson to originate from the associated PV (denoted DTF)
 - Constrains D^0 candidates to the nominal D^0 mass
 - Both constraints applied simultaneously (denoted OnlyD)
 - Additional constraint on B^0 mass applied (denoted BandDs)
- Fits required to have converged

- \bullet MC samples Truth matched using selections on TRUE_ID and TRUE_MOTHER_ID variables
- PID variable transformation performed using PIDCorr from PIDGen package
 - Unbinned correction, function of P_T , η and nTracks, correlations preserved.
- 2D reweighting of MC performed to match sWeighted control mode data
 - MC reweighted in *nTracks* and $B^0_{IP\chi^2_{output}}$

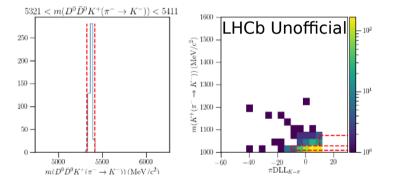
Preselections for peaking backgrounds

- Backgrounds from $B^+ \to D^0 \bar{D^0} K^+$ removed with the veto: (5220 < $m(D^0 \bar{D^0} K^+)$ < 5340) & $m(D^0 \bar{D^0} K \pi)$ > 5380 (99.99 % eff.)
- Backgrounds from $B^+ \to D^0 \bar{D^{*0}} K^+$ removed with the veto: (5050 < $m(D^0 \bar{D^0} K^+)$ < 5200) (92.73 % eff.)
- Background from $B_s^0 \to D^0 \bar{D^0} \phi$ removed with the vetoes: $(5321 < m(D^0 \bar{D^0} K^+(\pi^- \to K^-)) < 5411)$ and either $(1010 < m(K^+(\pi^- \to K^-)) < 1030)\&(\pi DLL_{K\pi} > -10)$ or $(1030 < m(K^+(\pi^- \to K^-)) < 1075)\&(\pi DLL_{K\pi} > 10)$ (99.97 % eff.)
- Background from $\Lambda_b^0 \to D^0 \bar{D^0} p K$ removed with the vetoes: (5575 < $m(D^0 \bar{D^0} K(\pi \to p)) < 5665) \& \pi DLL_{p\pi} > 0$ and (5575 < $m(D^0 \bar{D^0} (\pi \to K) (K \to p)) < 5665) \& \pi DLL_{K\pi} > 0$ (99.7 % eff.)

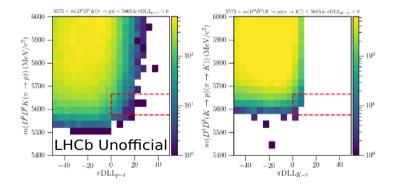
Veto region to remove background from $B^+ \rightarrow D^0 \bar{D^0} K^+$ (background MC)



Veto region to remove background from $B_s^0 \rightarrow D^0 \overline{D^0} \phi$ (swapped-mass hypothesis MC)



Veto region to remove background from $\Lambda_b^0 \to D^0 \overline{D}{}^0 p K$ (swapped-mass hypothesis MC)



Neural network classifier

- Use fully connected feed-forward neural network to further reduce combinatorial background (trained per tis/tos, D⁰ decay and run period, different hyperparams)
- NN classifier trained in two stages, with the first feeding into the second:
 - 1. D_{fromB} selects D^0 candidates originating from the B^0 meson
 - 2. $B_{selection}$ selects B^0 candidates
- D_{fromB} uses kinematic and topological variables related to D^0 candidates and their child particles ($K\pi$ or $K3\pi$)
 - $D
 ightarrow K3\pi$ modes use additional variables for each extra pion
 - Signal sample from MC
 - Background sample from data in D^0 mass sidebands (in signal region for B^0 and $\overline{D^0}$)
- $B_{selection}$ uses kinematic and topological variables independent of $m(K\pi)$, as well as the results from the D_{fromB} classifier
 - Signal sample from MC
 - Background sample from data in the B^0 mass sidebands, no cuts on D meson masses

Mass fits

- Signal fitted with DSCB function, background with exponential
 - DSCB tail parameters fixed to MC fit
 - Background parameters floated
 - Control mode Gaussian mean and sigma floated
 - Signal mode Gaussian mean and sigma fixed to value derived from fits to control mode and MC:

$$\begin{split} \mu_{sig}^{Data} &= \mu_{sig}^{MC} + (\mu_{ref}^{Data} - \mu_{ref}^{MC}) + (\mu_{sig}^{MC} - \mu_{ref}^{MC}) \\ \sigma_{sig}^{Data} &= \sigma_{ref}^{Data} \times \frac{\sigma_{sig}^{MC}}{\sigma_{ref}^{MC}} \end{split}$$

• Seperate fits for Run I and each year in Run II, as well as TIS TOS categories and D^0 decay modes

Background PDF NN - procedure (arXiv:1902.01452v2)

- An ANN estimates the background density as a function of the B⁰ mass and five invariant mass projections.
- Heavily regularised in B^0 mass continuity as a function of m_{B^0} .
- Trained on data in upper mass sideband, extrapolates into signal region.
- Accept/reject of a uniform sample covering the full B⁰ mass range used to generate the background distribution under the signal peak.
- A GBReweighter is then trained to weight the normalisation MC to look like generated background.
- Procedure implemented in Search for CP violation in $\Xi_b^- \rightarrow p K^- K^-$ decays. Tim Gershon, Thomas Latham, Anton Poluektov, Abhijit Mathad.

Model builder methodology - arXiv:1505.05133v2

- Start with baseline model Add resonances one at a time, evaluate likelihood ratio, then decide whether to keep it or not based on comparison with previous models.
- We modify the likelihood using LASSO when considering what resonances to keep:

$$-2log\mathcal{L} + \lambda(\sum \sqrt{FitFraction})$$

• Here λ is determined using the data sample, by minimising either the Akaike or Bayesian information criteria:

$$AIC(\lambda) = -2log\mathcal{L} + 2r, BIC(\lambda) = -2log\mathcal{L} + r \log n.$$

• $-2\log \mathcal{L}$ is from minimising the modified -2LL for a set of models evaluated with a given λ value.