

Characterization of SiPMs for LHCb Upgrade II

Constantinos Vrahas

on behalf RAL and UoE

Brief overview of LHCb Upgrade II

- For Upgrade II, the luminosity at LHCb will increase by a factor of 10, having the following effects:
 - 1. Increase in detector occupancy
 - 2. Need better timing and angular resolution
 - 3. Higher radiation resistance required
- New photodetectors are needed for the RICH
- Silicon Photomultipliers (SiPMs) are a promising candidate

Why use SiPMs?

- Arrays of Single-Photon Avalanche photo-Diodes (SPADs) consisting of p-n junctions
- Operated in reverse-bias for photoelectric amplification

Advantages of SiPMs:

- Higher PDE and readout rate than MaPMTs → high spatial and timing resolution
- Unaffected by external magnetic fields
- Flexible cell size

Disadvantages of SiPMs:

- Must be operated at single-photon mode to resolve Cherenkov rings → multiple sources of background
- Susceptible to radiation damage

• Nested box in light-tight enclosure provides cooling, insulation and precise humidity and temperature monitoring

Characterization of Breakdown Voltage

- When biased above this voltage, photon amplification begins
- Characterized using IV curves generated from the sourcemeter
- Computed using the relative derivative of the current
- V_{BD} at 25^oC was found to vary by ±0.4V between the 3 samples → linear dependence wrt temperature as expected for 1.3x1.3mm SiPMs

Constantinos Vrahas

Characterization of the Dark Count Rate

- Random noise generated by thermal fluctuations
- Peak voltage and peak-to-peak time difference used to compute DCR
- 5 populations of dark counts were identified:
 - 1. Dark counts
 - 2. Direct optical crosstalk
 - 3. Delayed optical crosstalk
 - 4. Afterpulses
 - 5. Electronic noise
- Fractions observed at 23°C and 3V_{OV}:
 - 1. True dark-counts (a) ~ 87%
 - 2. Cross-talk (b)+(c) ~ 7.4%
 - 3. Afterpulses (d) ~ **5.6%**

Temperature dependence of the DCR of 1.3x1.3mm SiPMs

1.3x1.3mm SiPMs with **50µm** pitch have been studied before and known results were reproduced:

- 1. Factor of **10** reduction in DCR observed for every **24 to 26°C** decrease in temperature
- 2. Overvoltage had no significant impact on the temperature dependence of the DCR

Testing 1.3x1.3mm SiPMs with 15µm pitch

- SiPMs with lower pitch have smaller microcells → affects operation of the cell → gain decreases
 → higher overvoltages must be used
- Motivation: Potentially improved PDE and radiation hardness → high importance for the RICH
- V_{BD} different than 50µm SiPM but temperature dependence is linear and within expectation
- Similar DCR considering above nominal OV but decreases more slowly with temperature at 29°C for an order of magnitude reduction in DCR

DCR and $V_{BD}\xspace$ of irradiated SiPMs

- Two 1.3x1.3mm 50 μ m pitch SiPMs irradiated to fluences of $1.6 * 10^{11} n_{eq}/cm^2$ and $3 * 10^{11} n_{eq}/cm^2$
- Similar V_{BD} observed for both SiPMs and change with temperature remains linear
- DCR measured for low dose SiPM at 2 and $3V_{0V}$ where an increase of approximately 4.5 orders of magnitude in DCR was observed after irradiation
- Change in temperature dependance observed after irradiation, 24 26°C → 30.5 32.5°C reduction in temperature required to decrease DCR by factor of 10

Summary and Prospects

What has been achieved so far:

- First batch of SiPMs characterized down to -40° C
- Irradiation of SiPMs to low and high dose, characterization is underway
- More 15µm pitch SiPMs procured, and characterization is almost finished
- Improvements to our cooling setup allow measurements at -60° C
- Design for a cryogenic cooling system has begun → characterization of SiPMs at liquid nitrogen temperatures

Our plans for the near future:

- Continued improvement of our setup to reach even lower temperatures
- Characterization of PDE and time-resolution for control and irradiated SiPMs
- Procuring and irradiating more types of SiPMs
- Annealing studies to potentially restore irradiated SiPMs
- Plans to bring more types of SiPMs to testbeams

Backup - Effects of irradiation on SiPMs

Understood effects of irradiation on SiPMs:

- 1. Increase in DCR due to defects reducing the energy required to cause avalanches
- 2. Greatly increased noise below V_{BD}
- 3. Increased afterpulses due to higher retention of charge from defects

Less understood effects of irradiation:

- 1. Shift in V_{BD} at higher fluences
- 2. Effects on PDE and time-resolution

Methods of mitigating DCR and noise:

- 1. Cooling lowers DCR to acceptable levels
- 2. Annealing to regularize defects caused by irradiation

Acknowledgement: Many thanks to RAL summer student Lukasz Domanski (UCL) for producing the plots from slides 5-7 and writing the analysis code!

Calvi, M. *et al.* (2020) 'Photon detectors and front-end electronics for rich detectors in high particle density environments', *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 952, p. 161788. doi:10.1016/j.nima.2019.01.015.