Status of the Fermilab Muon g - 2 Experiment

Ce Zhang

University of Liverpool

IOP Joint APP, HEPP and NP Annual Conference 2024

Status of the Fermilab Muon g - 2 Experiment

Introduction

- Experimental principles
- Run 2/3 improvements & results
- Improvements in Run 4/5/6
- ► Conclusion

Muon *g* – 2

- The anomalous magnetic moment of the muon:
 - Magnetic moments **precess** in a magnetic field $\vec{\mu} = g \frac{e}{2m} \vec{S}$
 - g factor quantifies interaction strength
 - Dirac predicted g = 2 for spin-1/2 fermions
- Interactions with virtual particles cause g to deviate from 2 (g > 2). Muon magnetic anomaly is defined as:

$$a_{\mu} = \frac{g-2}{2}$$

• The **muon precession frequency** is the rate at which the muon's spin and momentum accumulate relative angle:

 $2\mu'_{p}(H_{2}O, T_{r})B = \hbar\omega'_{p}(H_{2}O, T_{r})$

 \rightarrow we essentially measure <u>muon spin precession</u> relative to <u>proton spin precession</u>

 ω_a^m : modulation of decay positron time spectrum

B: Magnetic field measured via proton spin precession

• The **muon precession frequency** is the rate at which the muon's spin and momentum accumulate relative angle:

B: Magnetic field measured via proton spin precession

a

• The **muon precession frequency** is the rate at which the muon's spin and momentum accumulate relative angle:

A 'real-world' equation:

$$\mu = \frac{\omega_a^m}{\omega_p^m} \times \frac{(1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml})}{(1 + B_k + B_q)} \times \left[\frac{\mu_p'(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e} \frac{m_\mu}{m_e} \frac{g_e}{2} \right]$$

Muon g = 2 Experiment at Fermilab The Muon Campus

MC2 (Mu2e)

MC1

Muon

11

Polarized muon beam from Fermilab accelerator

- 3.1 GeV/c μ⁺
- Cyclotron period: 149.2 ns
- A cycle of 16 bunches repeating every 1.4 seconds

Inflector helps injecting polarized muons into a storage ring

Inflector Services

> Stored muon beam

- Inflector Body

• Pulsed magnets kicker changes muon angle to the good orbit (~10 mrad)

• Electrostatic Quadrupoles (ESQ) provide vertical focusing of the beam

- Quads cover 43% of azimuth
- Focus beam to a simple harmonic motion about closed orbit

• 1.45T super-ferric magnet shimmed to 50 ppm uniformity

Muon g - 2 Experiment at Fermilab Setups: Detectors

• Detect decay positrons with 24 calorimeters and 2 tracker stations

PbF₂ crystals

Muon *g* – 2 **Experiment at Fermilab** Setups: Detectors

• Detect decay positrons with 24 calorimeters and 2 tracker stations

Straw tracker developed in Liverpool

• Statistics: 4.7x more data in Run-2/3 than Run-1

RUN	σ _{STAT} [ppb]
1	434
2+3	201
1+2+3	185

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
 - 1) Re-designed resistors lead to stable beam storage

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
 - 1) Re-designed resistors
 - 2) Stronger kicker strength moved the beam closer to the center, reduce beam oscillation and E-field correction

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
 - 1) Re-designed resistors
 - 2) Stronger kicker strength
 - **3) Improved hall temperature** stability makes the magnetic field less variable

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
- Measurements on:
 - 1) Quad Transient Field with a new NMR probe in an insulator

Measurement probe mounted on trolley rail train allows full mapping of all quad stations

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
- Measurements on:
 - 1) Quad Transient Field with a new NMR probe in an insulator
 - 2) Kicker Transient Field has lower vibration noise in Run 2/3

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
- Measurements on:
 - 1) Quad Transient Field with a new NMR probe in an insulator
 - 2) Kicker Transient Field has lower vibration noise in Run 2/3
- Analysis:
 - Pile-up with improved algorithm

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
- Measurements on:
 - 1) Quad Transient Field with a new NMR probe in an insulator
 - 2) Kicker Transient Field has lower vibration noise in Run 2/3
- Analysis:
 - **Pile-up** with improved algorithm
 - E-field correction includes Time-momentum correlation

- Statistics: 4.7x more data in Run-2/3 than Run-1
- Running conditions
- Measurements on:
 - 1) Quad Transient Field with a new NMR probe in an insulator
 - 2) Kicker Transient Field has lower vibration noise in Run 2/3
- Analysis:
 - **Pile-up** with improved algorithm
 - E-field correction includes Time-momentum correlation

Systematic uncertainty of 70 ppb surpasses our proposal goal of 100 ppb!

Putting it all together 24th of July, 2023

• Unblinding meeting in Liverpool:

Putting it all together 24th of July, 2023

• Unblinding meeting in Liverpool:

Photo credits: McCoy Wynne

Right here! We were at the spine building \uparrow

Run 2+3 Result

FNAL + BNL Combination

 $a_{\mu}(FNAL; Run-2/3) = 0.00 \ 116 \ 592 \ 057(25) \ [215 \ ppb]$ $a_{\mu}(FNAL) = 0.00 \ 116 \ 592 \ 055(24) \ [203 \ ppb]$

UNIVERSITY OF

VERP

- Excellent agreement with Run-1 and BNL
- Uncertainty more than halved to 215 ppb
- FNAL combination: 203 ppb uncertainty

a_μ(Exp) = 0.00 116 592 059(22) [190 ppb]

Phys. Rev. Lett 131.161802 (October 2023) Detailed Report: arXiv 2402.15410 (February 2024)

Run 2+3 Result

Discrepancy between Experiments & Theories

• New experimental average with SM prediction (WP-2020) gives > 5σ

Run 2+3 Result

Discrepancy between Experiments & Theories

- New experimental average with SM prediction (WP-2020) gives > 5σ
- Since then, two important developments on SM prediction:
 - Lattice QCD from the BMW (2020)
 - New $e^+e^- \rightarrow \pi^+\pi^-$ cross section from CMD-3 (2023)

Disclaimer:

The CMD-3 point is a visual exercise. It is not a fully updated SM prediction!

- TI White Paper result has been substituted by CMD-3 only for 0.33 → 1.0 GeV.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes → should not be taken as final!

Even More Improvements in Run 4/5/6

• With Run4+5+6 data, we can **double our sensitivity again** and likely surpass our goal of 140ppm total uncertainty

Even More Improvements in Run 4/5/6

- In addition to statistics, lots of improvements are made to move to the next level, in particular:
 - 1) Quad RF system
 - 2) New detector ('mini sci-fi')
 - 3) Analysis techniques

	kickers	quadrupoles	СВО	muon loss	typical ctags
Run4	165 kV	18.2 kV, n= 0.108, RF off	8- 19- 5 -5-	2.00 1.75 1.50 1.25 1.00 0.75 0.50 QRF off	~500
Run5	165 kV	18.2 kV, n= 0.108, RF on		2.00 1.75 1.00 0.75 0.50 QRF off 0.75 QRF off	~400
Run6	165 kV	18.2 kV, n= 0.108, RF on		2.00 1.75 1.50 1.25 1.50 0.75 0.50 QRF off *	~350

Even More Improvements in Run 4/5/6 1) Quad RF system

 Quadrupole radio frequency (RF) system from Run 5 helps reduced horizontal beam oscillations

On Kim et. al, New J. Phys. 22, 063002 (2020)

Even More Improvements in Run 4/5/6

2) New 'mini sci-fi' detector

New detectors for direct beam measurements (Run-6)

Horizontal beam distribution

Momentum distribution from circulating beam

- 3 Fibers with 250 μm diameter measure circulating beam fast rotation intensity
- Better understanding & modeling of beam dynamics → improve the systematics

Even More Improvements in Run 4/5/6

3) Improved analysis technique

 Clustering algorithm and improved lost muon selection help to reduce hadronic contamination

New clustering algorithm ('RITA2') to be implemented in the analysis in the Europa group

Energy-time spectrum in 24 calorimeters see proton/deuteron leakage (Run-4)

Conclusions

- In Run-2/3, we have determined muon g 2 to an unprecedented **203 ppb** precision:
 - In excellent agreement with Run-1 & BNL
 - With more than halved the total uncertainty from Run-1, we have surpassed our TDR goals in statistics and systematics

- For Run-4/5/6, more improvements have been made:
 - Statistical reduction by another factor of 2 and further improved systematics
 - The final result in 2025 \rightarrow stay tuned!

Thanks!

Acknowledgements

- Department of Energy (USA),
- National Science Foundation (USA),
- Istituto Nazionale di Fisica Nucleare (Italy),
- Science and Technology Facilities Council (UK),
- Royal Society (UK),
- Leverhulme Trust (UK),
- European Union's Horizon 2020,
- Strong 2020 (EU),
- German Research Foundation (DFG),
- National Natural Science Foundation of China,
- MSIP, NRF and IBS-R017-D1 (Republic of Korea)

Backup

Run 2&3 Result

Starting Point: Run-1 Result, 2020

a_{μ} (FNAL; Run-1) = 0.00 116 592 040(54) [463 ppb] a_{μ} (Exp) = 0.00 116 592 061(41) [350 ppb]

Muon Precession Frequency

Extra terms in the Fitting Function

 A better model must account for detector effects, beam oscillations coupled to acceptance, lost muons and fast rotations effects

ω_a uncertainties

Muon Precession Frequency

Full Fit and Uncertainty improvements

• Run-2/3 uncertainty is 2.2 times smaller than Run-1

Quantity	Correction [ppb]	Uncertainty [ppb]
ω_a^m (statistical)	_	201
ω_a^m (systematic)	—	25
C_e	451	32
C_p	170	10
C_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{ m calib} \langle \omega_p'(\vec{r}) imes M(\vec{r}) angle$	_	46
B_k	-21	13
B_q	-21	20
$\mu_p'(34.7^\circ)/\mu_e$	_	11
m_μ/m_e	_	22
$g_e/2$	-	0
Total systematic	_	70
Total external parameters	_	25
Totals	622	215

Beam Dynamic Corrections

$$a_{\mu} = \frac{\omega_a^m}{\omega_p^m} \times \frac{(\mathbf{1} + \mathbf{C_e} + \mathbf{C_p} + \mathbf{C_{pa}} + \mathbf{C_{dd}} + \mathbf{C_{ml}})}{(1 + B_k + B_q)} \times [\dots]$$

Beam Dynamic Corrections

Uncertainty Summary

	Corrections [ppb]	Uncertainty [ppb]	Uncertainty in Run-1 [ppb]	 <i>C</i>_{pa} etc have been greatly reduced after fixing the 2
C _e	451	32	53	Droken nv resistors in Kun-1
C_p	170	10	13	$\overline{\omega}$ -22.2 $\overline{\omega}$ ω_{a} phase change
C _{pa}	-27	13	75	
C_{dd}	-15	17	-	
C_{ml}	0	3	5	-22.4 • Run-1d
Total	580	40	93	-22.45 -22.45 -22.45 -20. 250 -20. 250

46

Field in Muon Storage Region

7.112 m radius 'C'shape magnet with vertically-aligned field B = 1.45 T

- Dipole field has ppm-level uniformity (<20 ppm RMS across the full azimuth)</p>
- > Shimming devices (active and passive) minimise gradients and keep field uniform

NMR: Trolley and Fixed Probes

 A trolley with 17 NMR probes maps the magnetic field in muon storage volume every ~3 days

UNIVERSITY OF

LIVERPOOL

Run-1: **14** trolley maps; Run-2/3: 69 maps

NMR: Trolley and Fixed Probes

- 378 fixed NMR probes, above or below storage volume permanently installed ("fixed") at 72 locations around the ring (every ~5°)
- Track changes in the field continuously during muon storage

Uncertainty Summary

- Main reduction in the uncertainty comes from better understanding of the transient field effects (B_k and B_q)
- Interpolation uncertainty also reduced with increased trolley runs
- TDR goal already achieved

Outlook

- Towards solving SM prediction ($a_{\mu}^{HVP,LO}$) inconsistencies:
 - KLOE & BABAR discrepancy
 - Outstanding CMD-3 result
 - **MUonE** project @ CERN to better understand $a_{\mu}^{HVP,LO}$

Status of the MUonE experiment (12'+3')

Speaker: Riccardo Pilato (University of Liverpool (GB))

Outlook

Muon g - 2/EDM Experiment at J-PARC

Features:

Muon cooling

- Surface muon (3.4 MeV, large emittance)
- → thermal muon (0.2 eV, low emittance)

Muon LINAC

Muon acceleration to 212 MeV

3D spiral injection

- Large kick angle within a few ns
- Good injection efficiency

Storage ring

- Compact storage ring
- Tracking detector

Outlook

Muon g - 2/EDM Experiment at J-PARC

Goals:

a_{μ} (statistically limited)

- 0.45 ppm (phase-1, ~ BNL/FNAL Run-1)
- 0.10 ppm (phase-2, ~ FNAL Final)

Muon EDM (sensitivity)

• $1.5 \times 10^{-21} \ e \cdot cm$ (×70 better)

Schedule:

First data taking phase

- Start from 2028 and beyond
- Running time of 2 × 10⁷s (240 days)

Summary

Muon g - 2 Experiment at Fermilab

Better than 200 ppb precision achieved in Run-2/3

Beam Dynamics Corrections Precession Frequency Magnetic Field

Consistency Check; Blinding; Combination etc.

Up to 5-sigma discrepancy

SM prediction(s)

Data-driven method (WP2020) conflicts with the LQCD

Discrepancies within the data-driven method:

- KLOE BABAR .
- CMD-3 with all previous results

Future experimental results

- Final result (Run-4/5/6) from Fermilab (~2025)
- New Experiment at J-PARC (2028) •

Future SM update

- The Muon g 2 Theory Initiative is coordinating • the SM prediction update
- **MUonE Project** at CERN to directly measure HVP •

Consistency Check

• We perform many consistency checks: fit residual FFTs, fit start time scans, fits by calorimeter, fits by positron energy, etc.

Consistency Check

• We perform many consistency checks: fit residual FFTs, fit start time scans, fits by calorimeter, fits by positron energy, etc.

Blinding Scheme

Locked Clock Panel

$$\frac{\omega_{a}}{\tilde{\omega_{p}'}} = \frac{f_{\text{clock}} \,\,\omega_{\text{a,meas}} \left(1 + c_{e} + c_{p} + c_{ml} + c_{pa}\right)}{f_{\text{field}} \,\,\left\langle\omega_{p}\bigotimes\rho_{\mu}\right\rangle \,\left(1 + B_{qt} + B_{kick}\right)}$$

- Perform analysis with software & hardware blinding
- Hardware blind comes from altering our clock frequency
 - Non-collaborators set frequency to (40ϵ) MHz
- Clock is locked and value kept secret until analysis completed