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Scalar field dark matter

Weakly coupled low-mass dark matter could originate in the early universe
and manifest as coherently oscillating field:

Φ(t, r) = Φ0cos(ωΦt− k · r)

DM virialised in a galactic halo:
Dopper broadening → finite
coherence time

δω

ω
≈ 10−6
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Expected signal

Field couples to the electromagnetic field tensor and fermion masses:

L ⊇ Φ

Λγ

FµνFµν

4
− Φ

Λe
meΨ̄eΨe

→ DM changes the value of the fine structure constant α and of the
electron rest massme

→ This effectively changes the sizes and refractive indices of solids

a0 =
1

meα
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LIGO
Laser Interferometer Gravitational-wave Observatory

Dual-recycled Fabry-Pérot Michelson
Interferometer
Two detectors, 3000 km apart
Sensitive to length differences of less
than a proton radius
For details see G. Hammond’s
Tuesday talk!
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DM coupling in LIGO
Why do we see DM?

DM “size” effect only:
Beamsplitter

Splitting occurs far
from centre of mass

Test masses
Asymmetry from
thickness differences
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GW vs DM transfer functions
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Data analysis principle

Data-driven spectral analysis:
Optimal frequency binning as signal width: δω

ω ≈ 10−6

Logarithmically spaced frequency bins

Analysing 400 h of LIGO data would take 2 yr @128 cores
(or ≈ 100 t of CO2)
→ Prohibitive costs
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Borrowing from music theory?

LPSD’s main calculation:

Nj−1∑
n=0

xn · wn,je−2πiQ/Njn

Parseval’s theorem:

N−1∑
n=0

xny∗n =
1
N

N−1∑
k=0

XkY∗k

Results:
⪆ 2 · 104 speed-up
1500h of data analysed
in hours
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Results

Our results in green
Up to x1000 improvement
below 180Hz

Competitive up to 5 kHz

10th April 2024 Slide 9



Outlook

Already world-leading in
mass range
Directed mirror thickness
change studies?
Directly applicable to
next-gen detectors
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Questions?

Thank you for your attention!
Alexandre S. Göttel
gottela@cardiff.ac.uk

Aldo Ejlli
Kanioar Karan
Sander M. Vermeulen
Lorenzo Aiello
Vivien Raymond
Hartmut Grote
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10.4Hz: our best candidate
LHO vs LLO data
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Calibrated strain

Available strain data is calibrated to gravitational waves:

h(ω) =
IPD(ω)

L TGW(ω) eiϕGW

We are instead interested in DM-induced strain:

sDM(ω) =
IPD(ω)

|n tBTBeiϕB + tMTMeiϕM |
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Profile likelihood ratio search

q0: Look for positive signals

q0 =

−2 ln L(0, ˆ̂θ)
L(µ̂,θ̂)

if µ̂ ≥ µ

0 if µ̂ < µ

qµ: Determine upper limits

qµ =

−2 ln L(µ, ˆ̂θ)
L(µ̂,θ̂)

if µ̂ ≤ µ

0 if µ̂ > µ
,
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