Simulating cosmic ray muon spallation in Hyper-Kamiokande for a DSNB analysis

Jack Fannon

University of Sheffield

What are we trying to detect?

- **Diffuse supernova neutrino background** (DSNB) is the cumulative neutrino flux created by all past core collapse supernovae in the universe.
- Estimate (1 4) $\times 10^{-4}$ events/kton year from 8-80 MeV.
- Can be identified through inverse beta decay interactions: **Prompt positron signal**

Cosmic muon spallation

Delayed neutron capture ~8 MeV gamma cascade

Spallation background overlayed onto the positron kinetic energy spectra for low energy antineutrino events. PhysRevLett.93.171101

How are we going to detect it?

Super-Kamiokande

- ~27 years of data taking!
- Almost 4 years with Gd. Loaded to 0.03 % as of lacksquareJuly 2022, 75 μ s average time for neutrons to capture.
- Has a 1000 m (2700 m.w.e) rock overburden. ullet
- Observes muons at a rate of 2.5 Hz

Hyper-Kamiokande

- 8 x fiducial volume of Super-K
- Currently under construction and planned to begin data taking in 2027.
- Has a 650 m (1750 m.w.e) overburden. \bullet
- Will see muons at a rate pf ~45 Hz
- No plan to dope with Gd.

Spallation process

- Muons produce daughter particles that initiate electromagnetic and hadronic showers through spallation processes.
- Hadronic showers are the dominant production route for unstable isotopes.
 - 89% vs 11% for direct interactions between muon and oxygen nuclei.
- Decay products e^{\pm} , n, γ , are **produced at low** energy - < 20 MeV
- Showers can be located by neutron captures...

The current SK reduction

- The current SK reduction is **based on data**.
 - Spallation **likelihood** calculated using 5 variables.
 - dl_{trans} , dl_{long} , dt, Q_{μ} , Q_{res}
- Spallation background removal efficiency of ~90%.
- Estimated 50-90% SRN signal acceptance
- Introduces a dead-time for SRN events of ~10%.

Why change anything?

- **Two previous studies** simulating cosmic ray muon spallation at SK have been done (Li and Beacom (2014) and <u>A. Coffani (2021)</u>).
 - A. Coffani study done up to 0.01% Gd (SK-VI), no SK-VII simulations.
- Spallation events remain a major background to the **DSNB** search.
 - Background is $10 10^5$ times larger than the SRN flux in the 8-20 MeV region of interest.
- Can the simulations instead be used to create the cut?
 - Use a machine learning classification in place of the likelihood cut.
- Data based cut may not be enough for Hyper-K!

positron energy. ZHANG Yang PhD thesis 2015

Create a simulation-based cut using machine learning to classify spallation-caused low-E events against DSNB candidates.

Astropart.Phys.7:357-368,1997

- MUSIC is an MC muon propagation code used to transport muons through Ikenoyama to SK.
- Generates the energy and angle distributions of cosmic ray muons intersecting with the HK tank. Used as the input for FLUKA.

Create a simulation-based cut using machine learning to classify spallation-caused low-E events against DSNB candidates.

Astropart.Phys.7:357-368,1997

- FLUKA General purpose MC with a wide range of applications.
- Used here to simulate the muon interactions with water: hadronic showers, spallation, radioactive decays etc. Difficult to do this in Geant4 with optical photon tracking enabled.
- Custom FLUKA user-routines select spallation events and generate vectors for use with GHOST.

Astropart.Phys.7:357-368,1997

FLUKA output is piped into WCSim / the Geant-4 H20 Simulation Toolkit (GHOST) with a Hyper-K geometry.

Used here to simulate the detector response to decay particles and hadronic showers simulated by FLUKA.

Output from this point should emulate data.

Create a simulation-based cut using machine learning to classify spallation-caused low-E events against DSNB candidates.

Astropart.Phys.7:357-368,1997

Create a simulation-based cut using machine learning to classify spallation-caused low-E events against DSNB candidates.

Reconstructed spallation-produced low-E events from GHOST then used alongside a sample of DSNB IBD events to train and test a machine learning classification.

Training features are based on the variables currently used to calculate the data-based likelihoods (distance to muon track etc.).

Muon transport with MUSIC

- MUSIC transports muons from surface of Mt. Ikeno and takes into account:
 - Topology
 - Bremsstrahlung lacksquare
 - Pair production
 - Multiple and inelastic scattering \bullet
- Mean energy of muons reaching SK and HK 258 GeV \bullet
- Energy range reaches several TeV.

Phys.Rev.C81:025807,2010

FLUKA Spallation Simulation

- Reproducing simulation by A. Coffani with increased Gd concentration.
- SK (HK) geometry within FLUKA:
 - 39.3 m (68 m) diameter
 - 41.4 m (71 m) tall
 - Acts as pure-water or gadolinium-doped water target
- Pipe transported muon primaries from MUSIC into FLUKA.
- Simulate muon interactions in Gd-water.
- Interface with GHOST

Magnified event display

Interfacing with GHOST

- Need detector response to reconstruct location of shower in simulation.
- Use FLUKA to simulate the hadronic processes, decays and muon-nuclear interactions.
- **Disable all but EM physics** in GHOST to interface the two.
- Stitch together muon track, shower particles, neutron captures and decay products for a full spallation simulation.

Data/MC comparison

from data

• 10^6 simulated muons compared with ~46 $\times 10^6$ reconstructed muon candidates

Data/MC comparison

- Good agreement also seen in entry positions.
- snapping.

Peaks in data are expected to be caused by grid-based reconstruction — PMT

Data/MC comparison

- Geant 4 simulated decay betas where primaries were produced using FLUKA sims.
- Compare distributions once normalised to integral.
- Excess in data expected as simulation is only products from SK background decays and nothing else.
- Not comparing in < 8 MeV phase space due to reactor neutrino cut.

The classifiers

- Setup a pipeline for training and testing the performance of five difference classifiers:
 - BDT, random forest, AdaBoost, kNeighbours, and gradient boosted.
- Trained on a preliminary set of simulations created using results from A. Coffani's previous work.
- BDT shows good classification power: **above** 90% probability of correctly identifying spallation and SRN events in the < 15 MeV range.

shown against reconstructed positron/electron energy for five different classifiers.

Summary and next steps

FLUKA spallation simulation is setup:

distribution of decay products.

Machine learning training/testing pipeline is in place: Discrimination power of five classifiers tested on a preliminary set of simulations. BDT currently performs the best: >90% probability of classifying correctly

Simulate other backgrounds

A more robust analysis requires other backgrounds to the DSNB search to be simulated: atmospheric & solar neutrinos.

Show good agreement with data for muon entry point, muon direction and energy

Backups

Isotope table

Isotope	Half-life[s]	E _{kin} [MeV]	Decay mode	$\begin{vmatrix} \text{Yields} \times 10^{-3} \\ (\mu^{-1}\text{g}^{-1}\text{cm}^3) \end{vmatrix}$	$\begin{vmatrix} \text{Yields}[53] \times 10^{-3} \\ (\mu^{-1}\text{g}^{-1}\text{cm}^3) \end{vmatrix}$
¹⁸ N	0.624		β^{-}	0.007 ± 0.004	0.006
17N	4.173		$\beta^{-}n$	0.14 ± 0.02	0.19
^{16}N	7.13	$4.27 + 6.13(\gamma)$	$\beta^-\gamma$ (66%)	5.8 ± 0.1	5.8
		10.44	β ⁻ (28%)		
¹⁶ C	0.747	~ 4	$\beta^{-}n$	0.01 ± 0.006	0.006
¹⁵ C	2.449	$4.51 + 5.3(\gamma)$	$\beta^-\gamma$ (63%)	0.27 ± 0.002	0.26
		9.77	β ⁻ (37%)		
^{14}B	0.0138	$14.55 + 6.09(\gamma)$	$\beta^-\gamma$	0.01 ± 0.005	0.006
¹³ O	0.0086	$8\sim 14$	β^+	0.06 ± 0.01	0.08
¹³ B	0.0174	13.44	β^{-}	0.59 ± 0.03	0.61
¹² N	0.0110	16.38	β^+	0.36 ± 0.03	0.41
¹² B	0.0202	13.37	β^{-}	3.8 ± 0.09	3.9
¹² Be	0.0236	11.71	β^{-}	0.03 ± 0.008	0.03
¹¹ Be	13.8	11.51)	β ⁻ (55%)	0.21 ± 0.02	0.26
		9.41+2.1(γ)	$\beta^-\gamma$ (31%)		
¹¹ Li	0.0085	20.62	$\beta^{-}n$	0.007 ± 0.004	0.003
⁹ C	0.127	$3\sim 15$	β^+	0.26 ± 0.02	0.29
⁹ Li	0.178	~ 10	$\beta^{-}n$ (51%)	0.59 ± 0.03	0.60
		13.6	β^- (49%)		
⁸ B	0.77	13.9	β^+	1.8 ± 0.06	1.9
⁸ Li	0.838	13.0	β^{-}	4.1 ± 0.09	4.2
⁸ He	0.119	$9.67 + 0.98(\gamma)$	$eta^-\gamma$ (84%)	0.06 ± 0.01	0.07
		13.6	$\beta^{-}n(16\%)$		

SK background isotopes taken from:

Alice Coffani. New studies on cosmogenic induced spallation background for Supernova relic neutrino search in the Super-Kamiokande experiment. Physics [physics]. Institut Polytechnique de Paris, 2021. English. ffNNT : 2021IPPAX112ff. fftel-03591741f

Classification performance - preliminary

Probability of correctly identifying an IBD shown against reconstructed positron/electron energy for five different classifiers.

Probability of correctly identifying an event caused by decay of a spallation product shown against reconstructed positron/electron energy for five different classifiers.

Classification performance - preliminary

Probability of correctly identifying an IBD shown against reconstructed positron/electron energy for five different classifiers.

Area underneath ROC curve for five classifiers in five energy bins. Bins are 4 MeV wide from 0 to 20 MeV.

- Calculated by using a 5 split kFold validation and \bullet taking the area underneath the mean ROC curve.
- Boosted decision tree (yellow) shows the best classifying power.
- kNeighbours classifier is little better than random guessing (50% chance).
- AdaBoost, GradientBoosting and Random forest perform almost equally with a small dip in the 4-8 MeV bin.
- Reductions in classifying power could be related to classification of specific isotopes - requires further investigation.

AdaBoost ROC

Gradient Boosting ROC

Random Forest ROC

kNeighbours ROC

BDT ROC

