

TPC Calibration in the Short Baseline Near Detector

Robert Darby R.Darby@sussex.ac.ukuk

The SBN Program and SBND

Short Baseline Neutrino (SBN) Program

- □ Comprised of SBND & ICARUS, based at Fermilab
- □ ICARUS started data-taking in 2022, SBND will begin by summer 2024
- □ Main physics goal is to investigate sterile neutrino hypothesis for the Low Energy Excess seen at LSBND/MiniBooNE

SBND Overview

- SBND is a Liquid Argon Time Projection Chamber (LArTPC)
- Readouts:
- 2 TPCs with 3x2 anode planes (induction = U,V; collection=Y), ~11k total wires
- □ 120 PMTs + 192 X-ARAPUCAs
- 7 Cosmic Ray Tagger (CRT) planes
- To optimise physics performance, precise calibration is neeced
- Use standard candles including stopping μ

Stopping µ in SBND

Stopping µ Physics

- μ lifetime ~2.2 μs longer than other interactions
- \Box Michel e⁻ = e⁻ from μ decay at rest

W-

- \Box Can identify μ decay point by:
 - Bragg peak
 - Michel flash

μ

• Track direction change

- □ Expect ~800 cosmic rays /s
- \Box Stopping μ + Michel e used in:
 - Energy scale calibration ($C_{calib} = e^{-}/ADC$)
 - Light yield
- \square µ⁻/Michels are minimally ionising
- Residual range (RR) = distance from end of track

Select stopping μ ? Use a trigger

Stopping µ Trigger

Trigger Overview

□ Stopping trigger has two phases:

- Detect coincidence (< 100ns) between PMTs and either (bottom CRT plane veto)
 - A single CRT plane
 - Both top planes
- Detect Michel flash in PMT waveforms >100ns after initial coincidence
 - Add PMT waveforms by ADC and multiplicity
 - Search for single coincident peak ins ummed ADC, multiplicity waveforms

Multiplicity = no. PMTs with time coincident signal over threshold

Multiplicity Thresholds

1270 simulated cosmic ray showers

Drop at multiplicity of 60 PMTs due to higher proportion of stopping μ contained in single TPC (60 PMTs) than crossing μ which enter both

Stopping μ contained in single TPC useful for light yield measurements, so multiplicity < 60 used for hardware

Performance

Stage	N Stopping	N Background	N Total	Purity (%)	Efficiency (%)
Simulation	1175	20069	21244	5.5	100
CRT + PMT Coincidence	752	17609	18361	4.1	64.0
> 50 Multiplicity	678	10512	11190	6.1	57.7
1 ADC + Multiplicity Peak	171	609	780	21.9	14.6
> 30 Multiplicity	121	344	465	26.0	10.3

Purity: 26.0 % Efficiciency: 10.3 %

Energy Scale Calibration

- Energy-scale calibration will help ensure hit calorimetry is accurate – direct impact on cross-section, oscillation measurements.
- Method:
- 1. Perform data selection cuts on stopping tracks
- 2. e⁻ lifetime corrections account for e⁻ absorption by impurities
- 3. Fit Landau-Gaussian convolution to dQ/dx for RR bins
- 4. Calculate expected dQ/dx from PDG dE/dx
- 5. Fit to find C_{calib}

- □ 20k simulated and reconstructed cosmic events
- \Box Only select cathode-crossing stopping μ
- □ µ stop >15cm from detector edge large track length, induction plane coverage
- Pitch = track angle after recombination. Hits with 0.6 < pitch < 0.8cm used to match literature
- Hits are anisochronous do not overlap with neighbours in track

Electron Lifetime Correction

 Lifetime accounts for ionisation e⁻ capture by impurities

MC Data and Lifetime Correction

SBND OF DETECTO

Apply lifetime corrections then apply Landau-Gaussian fit to Residual Range between120-200cm, 5cm bins

Recombination Corrections

□ Using PDG data for muon Residual Range vs KE in LAr^[2]

□ Apply ArgoNEUT ModBox recombination corrections [3, 4]

 $C_{calib} = e^{-}/ADC = dQ/dx \text{ [exp] } / dQ/dx \text{ [data MPV]}$ Expected value = 50 e_/ADC - some bias being applied in reconstruction/method.

- □ Stopping Muon Trigger developed
- □ Workflow for calculating e⁻/ADC gain for SBND prepared
- Coming Next...
- \Box Investigate bias leading to higher than expected C_{calib}
- **Using Data:**
 - Select stopping muons and Michel e for light yield calibrations, using Lar latelight absorption by impurities

Final Goal:

□ Low-energy Q+L calorimetry module configured with Michel energy spectrum. Used for v_e CC measurements.

References

[1] Aguilar-Arevalo, A. A., Brown, B. C., Conrad, J. M., Dharmapalan, R., Diaz, A., Djurcic, Z., ... & MiniBooNE Collaboration. (2021). Updated MiniBooNE neutrino oscillation results with increased data and new background studies. *Physical Review D*, *103*(5), 052002.

[2]https://pdg.lbl.gov/2012/AtomicNuclearProperties/MUON_ELOSS_TABLES/muonloss_289.pdf

[3] Acciarri, R., Adams, C., Asaadi, J., Baller, B., Bolton, T., Bromberg, C., ... & Zeller, G. P. (2013). A study of electron recombination using highly ionizing particles in the ArgoNeuT Liquid Argon TPC. *Journal of Instrumentation*, 8(08), P08005.

[4] Doke, T., Masuda, K., & Shibamura, E. (1990). Estimation of absolute photon yields in liquid argon and xenon for relativistic (1 MeV) electrons. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 291*(3), 617-620.