

Benchmarking the DarkSide-20k UAr Cryogenics System

Oliver Macfadyen – Royal Holloway, University of London On behalf of the DarkSide-20k collaboration IOP Conference Liverpool 2024

Oliver Macfadyen

DarkSide-20k

- A direct detection experiment searching for dark matter from keV to >>TeV masses, located at the Laboratori Nazionali del Gran Sasso - INFN
- Unique target of ultra-pure low-radioactivity Argon (UAr) in the inner detector
 - X1400 less ³⁹Ar [3]

June

DarkSide-20k Construction

March 2024

10/04/2024

DarkSide-20k Cryogenic System

- Goal of 1000 standard liters per minute for recirculation of UAr
 - Improve heat exchange efficiency
- Maintain Argon purity
 - Remove electro negative molecules

ROYAL HOLLOWAY

DS20k Cryogenic Test System

Test of the DarkSide-20k system

- First test at CERN in 2021/22
- Two runs testing the cooling and recirculation at LNGS in 2023/24
 - Test of a mock up of the DarkSide-20k TPC happening this summer
- Change of heat exchanger design between LNGS runs 1 and 2
 - Improve efficiency of heat exchange between the GAr and the LAr
 - Increase maximum flow rate

Maximum Argon Flow Test

7

No. Tubes needed for 1000 slpm

Cooling Control

- Cooling power controlled by boil-off nitrogen gas flow
- Nitrogen flow controlled by two different types valves

Pressure Stability and Valve Response

Outlook

- Cryogenic benchmarking complete
- System performance confirms modeling
 - Cooling at a rate compatible with the mockup specification
- Integration of a DarkSide-20k mockup TPC

Thanks for listening

All things DarkSide-20K

Talks: Alice Hammer, Zoe Balmforth, Seraphim Koulosousas, Andrea Marasciulli Posters: Giovanni Rogers, Andrzej Gawdzik

Oliver Macfadyen

References

[1] TheDarkSide-20k TPC and underground argon cryogenic system. <u>https://scipost.org/SciPostPhysProc.12.069</u>

[2] Results from the first use of low radioactivity argon in a dark matter search.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.081101

[3] DarkSide 50 results

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.081101

Extra Material

Time Projection Chamber (TPC)

- Dual phase signifies that there is a liquid and a gas phase
- Particle interacts with the Liquid UAr (LUAr) generating the first prompt light S1 and ionisation electrons
- Electrons drift upwards in the 200 V/cm electric field towards the gas phase where they produce a second prompt light identified as S2
- S1 and S2 both detected using arrays of Silicon Photo Multipliers (SiPMs) where the xy position can be calculated using the number of the channel that was triggered and the z depth by the time difference between the S1 and S2 prompts

ROYAL HOLLOWAY

DarkSide 20k UAr Cryogenic System

10/04/2024

System Efficiency

Pressure Stability and Switching Response

UAr Heat Exchanger Diagram

• Both designs:

ROYAL HOLLOWAY

- LAr + Gar mix arriving from the condenser
- LAr arriving from the cryostat
- Heat exchange occurs between the two
- LAr + GAr mix condenses and goes into the cryostat
- GAr (produced from LAr from the cryostat) circulates through the purification loop
- Design 1:
 - Heat exchange between the gas inside the left section and the liquid in the right section
 - GAr causes reduction in surface area available for heat exchange and so causes a loss in efficiency
- Design 2:
 - The Gar from the condenser rises to inside the tubes
 - Increased surface area for heat exchange greatly improves potential flow rate

