Studies of radioactive background from environment for a potential LXe dark matter experiment at Boulby

Jemima Tranter ${ }^{1,2}$, Vitaly Kudryavtsev ${ }^{1}$ and Paul Scovell ${ }^{2}$

${ }^{1}$ The University of Sheffield, Department of Physics and Astronomy, UK
${ }^{2}$ STFC Boulby Underground Laboratory, Boulby Mine, Redcar \& Cleveland, UK

Project overview

- The next generation detector (G3) will look for WIMP interactions and evidence of $0 v \beta \beta$ decay.
- G3, based on LXe, will have at least a magnitude greater sensitivity than predicted limits for current LXe detectors.
- Critical challenge for success is minimising sources of background.
- Building G3 underground shields it from cosmic rays, but the rock provides a gamma-ray background from traces of ${ }^{238} \mathrm{U},{ }^{232} \mathrm{Th}$ and ${ }^{40} \mathrm{~K}$.
- This project aims to assess the shielding thickness for G3 and also the suitability of Boulby Mine, North Yorkshire, as a potential location.

WIMP

interactions

Gamma-ray background from rock

- Natural radionuclides ${ }^{238} \mathrm{U},{ }^{232} \mathrm{Th}$ and ${ }^{40} \mathrm{~K}$ are found in rock and construction materials. Daughter isotopes in their decay chains emit gamma-rays of a broad range of energies which contribute to the electron recoil background.
- WIMP ROI: 0-20 keV, $0 \vee \beta \beta$ decay of ${ }^{136} \mathrm{Xe}: 2458 \mathrm{keV}$.
- From LZ experience, water and gadolinium-doped liquid scintillator (GdLS) are used as shielding against neutrons and gamma-rays, with gamma-rays the more difficult of the two to attenuate.
- To investigate the shielding thickness required for G3, a simulation has been developed in Geant4. This will affect the design of the cavern.

The Simulation

- The simulation geometry is based on a potential cavern in Boulby mine.
- $40 \times 40 \times 40 \mathrm{~m}$ size cube of rock surrounding a $30 \times 30 \mathrm{~m}$ size cylindrical cavern.
- 3.5 m of water on the top and sides, 1.5 m of water below the TPC. 0.5 m GdLS around the TPC.
- 30 cm thick steel plate beneath the water tank.
- 71 tonnes of liquid xenon in the TPC.

- There is a thin (0.5 m) layer of salt rock (ρ $=2.17 \mathrm{~g} \mathrm{~cm}^{-3}$) surrounding the hall, from which gamma-rays were generated, simulating ${ }^{238} \mathrm{U}$ and ${ }^{232}$ Th decays.
- A multi-stage process is required because upwards of several billion gamma-rays need to be generated to attain statistically acceptable data.

Through the water tank

Above: The ${ }^{208} \mathrm{TI}$ line from the ${ }^{232} \mathrm{Th}$ chain is all that is needed to be simulated due to more attenuation of lower energy gamma-rays.

Energy deposits

Multiple scatter and Fiducial Volume cuts

${ }^{232}$ Th deposits in the TPC, 2408-2508 keV ($\pm 50 \mathrm{keV}$ around the $0 \mathrm{v} \beta \beta$ Q-value, 2458 keV)

Black dotted line shows fiducial volume, ~ 63 tonnes.

$$
\begin{gathered}
\sigma_{z}^{*}=\sqrt{\frac{\sum_{i=1}^{N} w_{i}\left(z_{i}-\bar{z}^{*}\right)^{2}}{\sum_{i=1}^{N} w_{i}}} \sigma_{r}^{*}=\sqrt{\frac{\sum_{i=1}^{N} w_{i}\left(\left(x_{i}-\bar{x}^{*}\right)^{2}+\left(y_{i}-\bar{y}^{*}\right)^{2}\right)}{\sum_{i=1}^{N} w_{i}}} \\
N=\text { Number of entries in } x_{i} \\
w_{i}=\text { array of weights } \\
x_{i}=\text { array of data } \\
\bar{x}^{*}=\text { weighted mean of array }
\end{gathered}
$$

MS:

$$
\begin{aligned}
& \sigma_{\mathrm{R}}<5 \mathrm{~cm} \\
& \sigma_{\mathrm{z}}<0.5 \mathrm{~cm}
\end{aligned}
$$

FV:

$-123<Z<113 \mathrm{~cm}$

Before multiple scattering cut

After multiple scattering cut

Results

These results represent rates of events in the TPC for $1 \mathrm{~Bq} \mathrm{~kg}^{-1}$ each of ${ }^{238} \mathrm{U}$, ${ }^{232} \mathrm{Th}$ and ${ }^{40} \mathrm{~K}$, with all analysis cuts applied.

For WIMP search we need <1 event year ${ }^{-1}$ and for $0 v \beta \beta$ decay we need <0.1 event year ${ }^{-1} \pm 50 \mathrm{keV}$ around

	(0-20 keV		0-100 keV		2408-2508 keV	
Isotope	events	$\begin{aligned} & \text { rate }\left[\text { year }^{-1}\right. \\ & \left.(\mathrm{Bq} / \mathrm{kg})^{-1}\right] \end{aligned}$	events	$\begin{aligned} & \text { rate }\left[\text { year }^{-1}\right. \\ & \left.(\mathrm{Bq} / \mathrm{kg})^{-1}\right] \end{aligned}$	events	$\begin{aligned} & \text { rate [year }{ }^{-1} \\ & (\mathrm{~Bq} / \mathrm{kg})^{-1} \text {] } \end{aligned}$
${ }^{208} \mathrm{Tl}$	$1_{-0.63}^{+1.75}$	$0.0019_{-0.0012}^{+0.0033}$	$9_{-2.67}^{+3.79}$	$0.017_{-0.005}^{+0.007}$	1593 ± 40	3.01 ± 0.08
${ }^{232} \mathrm{Th}$	$2_{-1.26}^{+2.25}$	$0.0038_{-0.0024}^{+0.0043}$	$8_{-2.7}^{+3.32}$	$0.015_{-0.005}^{+0.006}$	1579 ± 40	3.02 ± 0.08
${ }^{238} \mathrm{U}$	$0_{-0}^{+2.44}$	$0_{-0}^{+0.0007}$	$2_{-1.26}^{+2.25}$	$0.0006_{-0.0004}^{+0.0007}$	633 ± 25	0.186 ± 0.074
${ }^{40} \mathrm{~K}$	$0_{-0}^{+2.44}$	$0_{-0}^{+0.00004}$	$0_{-0}^{+2.44}$	$0_{-0}^{+0.00004}$	n/a	n/a

Asymmetric uncertainties are quoted at 68.27 \% confidence level (C.L) intervals for the Poisson signal mean and 90% C.L intervals for 0 values.

Boulby Underground Mine

- Deepest mine in England at a depth of 1.1 km .
- Houses many experiments spanning multiple scientific disciplines.
- There is a class 1000 cleanroom called the Boulby UnderGround Screening facility called BUGS.
- Potential location for G3, in the layer of polyhalite (1300 m): $\mathrm{K}_{2} \mathrm{Ca}_{2} \mathrm{Mg}\left(\mathrm{SO}_{4}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
- Polyhalite is high in ${ }^{40} \mathrm{~K}$, but low in ${ }^{238} \mathrm{U}$ and ${ }^{232} \mathrm{Th}$.

Measuring samples

Chaloner

- Detector Type: P-Type
- Configuration: BEGe
- Crystal Weight: 0.8 kg
- Relative Efficiency: 48%
- Background Status: Very Low Background

BEGe detectors offer high energy resolution, making them suitable for identifying and quantifying gamma-ray energies, particularly at low energies ($3 \mathrm{keV}-3 \mathrm{MeV}$).

Boulby rock

Average measurements of radioactive isotopes in rock samples from Boulby Mine. An * denotes an upper limit at 95\% confidence interval.

ICL mining company gave us samples of rock from boreholes ~1100 m below sea level.

Key:
FWHL = footwall halite $\mathrm{CPH}=$ clear pink halite LG = low grade

The difference in the halites is mainly down to composition, contaminants and grain size.

Rock type	40 K activity $\left[\mathbf{B q ~ k g}^{-1}\right]$	${ }^{232} \mathbf{T h}$ activity $\left[\mathbf{B q ~ k g}^{-1}\right]$	${ }^{238} \mathbf{U}$ activity $\left[\mathbf{B q ~ k g}^{-1}\right]$	${ }^{235} \mathbf{U}$ activity $\left[\mathbf{B q ~ k g}^{-1}\right]$
Polyhalite 1100 m	3583 ± 3	0.0091 ± 0.0004	0.134 ± 0.020	$<0.019^{*}$
Polyhalite 1300 m	2498 ± 1	0.019 ± 0.005	0.382 ± 0.009	$<0.008^{*}$
Salt polygons	58.6 ± 0.3	0.190 ± 0.005	0.199 ± 0.006	0.021 ± 0.002
LG potash	3578 ± 3	3.38 ± 0.03	2.54 ± 0.027	0.140 ± 0.009
Potash	1508 ± 3	2.86 ± 0.02	2.36 ± 0.04	0.118 ± 0.011
FWHL	282 ± 1	1.19 ± 0.01	1.16 ± 0.02	0.059 ± 0.005
CPH	1709 ± 3	0.417 ± 0.024	0.535 ± 0.026	$<0.042^{*}$
Anhydrite	13.6 ± 0.1	0.660 ± 0.005	3.93 ± 0.01	0.192 ± 0.002
Halite 3	587 ± 2	0.894 ± 0.022	0.877 ± 0.023	0.047 ± 0.008
Halite 4	480 ± 1	4.31 ± 0.02	2.36 ± 0.02	0.129 ± 0.004
Halite 9	37.5 ± 0.2	0.302 ± 0.005	0.595 ± 0.007	0.035 ± 0.002

Rates normalised to Boulby rock

- Rates of events in the TPC with analysis cuts applied, normalised to measurements of polyhalite from Boulby mine, 1300 m underground.
- Note that these are only cavern backgrounds and do not include backgrounds from other sources such as detector materials.
- Reducing the shielding by 0.5 m will increase the rate by a factor of 8.5 , which at $1 \mathrm{~Bq} \mathrm{~kg}^{-1}$ is still within sensitivity limits for WIMP search, but $0 v \beta \beta$ will require a reduced FV.

	Normalised to $1 \mathrm{~Bq} \mathrm{~kg}^{-1}$		
	0-20 keV	0-100 keV	2408-2508 keV
Isotope	Rate [year ${ }^{-1}$]	Rate [year ${ }^{-1}$]	Rate [year ${ }^{-1}$]
${ }^{232} \mathrm{Th}$	$(3.8-2.4) \times 10^{-3}$	$\left(1.5{ }_{-0.5}^{+0.6}\right) \times 10^{-2}$	3.02 ± 0.08
${ }^{238} \mathrm{U}$	$0_{-0}^{+0.0007}$	$\left(5.9{ }_{-3.7}^{+6.6}\right) \times 10^{-4}$	0.186 ± 0.074
${ }^{40} \mathrm{~K}$	$0_{-0}^{+0.00004}$	$0_{-0}^{+0.00004}$	n/a

Normalised to Boulby
measurements

	$\mathbf{0 - 2 0} \mathbf{~ k e V}$	$\mathbf{0 - 1 0 0} \mathbf{~ k e V}$	$\mathbf{2 4 0 8 - 2 5 0 8} \mathbf{~ k e V}$
Isotope	Rate [year ${ }^{-1}$]	Rate $\left[\mathrm{year}^{-1}\right.$]	Rate [year ${ }^{-1}$]
${ }^{232} \mathrm{Th}$	$\left(7.2_{-4.6}^{+8.2}\right) \times 10^{-5}$	$\left(2.9_{-0.9}^{+1.1}\right) \times 10^{-4}$	0.057 ± 0.014
${ }^{238} \mathrm{U}$	$0_{-0}^{+0.00027}$	$\left(2.3_{-0.8}^{+2.5}\right) \times 10^{-4}$	0.071 ± 0.003
${ }^{40} \mathrm{~K}$	$0_{-0}^{+0.1}$	$0_{-0}^{+0.1}$	n/a $\quad 13$

Conclusions

- A simulation to propagate gamma-rays through a simplified geometry of a next generation dark matter experiment housed in Boulby mine has been created.
- Rates of <1 year ${ }^{-1}(\mathrm{~Bq} / \mathrm{kg})^{-1}$ have been found for each the radionuclides, ${ }^{232} \mathrm{Th},{ }^{238} \mathrm{U}$ and ${ }^{40} \mathrm{~K}$ at from simulated data in the WIMP search ROI.
- The simulation demonstrates that for $1 \mathrm{~Bq} \mathrm{~kg}^{-1}$, the shielding is sufficient for WIMP search, but a smaller FV is needed for $0 v \beta \beta$ decay. Reducing the shielding by 0.5 m will increase the rate by a factor of 8.5 , which at $1 \mathrm{~Bq} \mathrm{~kg}^{-1}$ is still within sensitivity limits for WIMP search, but $0 v \beta \beta$ will require a reduced FV .
- Measurements at Boulby have shown the following rates in the 1300 m polyhalite layer:
- ${ }^{232}$ Th: $0.019 \pm 0.005 \mathrm{~Bq} \mathrm{~kg}^{-1}$
- $\quad{ }^{238} \mathrm{U}: 0.382 \pm 0.009 \mathrm{~Bq} \mathrm{~kg}^{-1}$
- $\quad{ }^{40} \mathrm{~K}: 2498 \pm 1 \mathrm{~Bq} \mathrm{~kg}^{-1}$
- If G3 were to come to Boulby, the shielding is sufficient for WIMP search and $0 v \beta \beta$ decay, but again, this takes only gamma-rays from the cavern into account (and neutrons as they are more easily attenuated), and not gamma-rays from detector materials.

Acknowledgements

I would like to thank STFC for funding this project and the ICL Mining Company for access to Boulby mine, their rock samples and their knowledgeable geologists.
I would also like to thank the whole team from the Boulby Underground Laboratory who assisted me in my data collection.

WIMP ROI

- In a LXe-based detector, WIMPs will interact with a Xe nucleus, producing an nuclear recoil.
- Within the energy region of interest for WIMP searches, this can be difficult to distinguish from electron recoils from processes like Compton scattering.

Back-up slides

Boulby rock samples

Analysis cuts

${ }^{232}$ Th deposits in TPC, 0-100 keV and 2408-2508 keV

- 200 keV threshold for deposits in the GdLS.
- 100 keV threshold for deposits in the skin.
- $1 \mu \mathrm{~s}$ anti-coincidence time window.

