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THE LUX-ZEPLIN EXPERIMENT

S DEY 2024

4850 ft below surface

■ Dual Phase Xe
■ Quadruple 

Nested 
Detector

■ Sanford 
Underground 
Research Lab, 
SD, US

1

2

3

4



3

THE LUX-ZEPLIN EXPERIMENT

S DEY 2024

100x more sensitive 
than LUX

(6.3 ± 0.5) × 10−5 
events/keVee/kg/day 
(60x lower background 
rate than LUX)



DUAL PHASE TPCS & FIELDS For Single Scatters 

■ 3D Event Reconstruction

■ PMT Hit Pattern → xy
■ Drift Time → z 

■ S2:S1 → Electronic Recoil 
(ER) vs Nuclear Recoil (NR) 

■ Recombination is field 
dependent!
■ Strong E field → more 

charge freed, less light
■
■ ER-NR band positions in 

S1-S2 space changes
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LZ ELECTRIC FIELDS

S DEY 2024

Anode Mesh

Gate Mesh

PTFE

PEEK Spacer

PMT Array

Extraction

𝜿LXe= 1.875
𝜿GXe= 1
𝜿PTFE= 2.1
𝜿PEEK= 3.2

Dual Phase

5
Polytetrafluoroethylene 
(Teflon)

Polyether ether ketone

Field Rings
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THE LZ ELECTRIC FIELDS PACKAGE

S DEY 2024
S. Dey 23

Cathode, Anode, 
Gate, PMT Voltages

Diffusion (yes or no)?

Temperature

Boundary definition

Geometry/ Sampling 
Points

Drift velocity
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LZEF

S DEY 2024
S. Dey 23

Cathode, Anode, 
Gate, PMT Voltages

Diffusion (yes or no)?

Temperature

Boundary definition

Geometry/ Sampling 
Points

Field Map

Drift Map

Wall Attachment

Drift velocity

LZEF



LZEF

S DEY 2024
S. Dey 23

Cathode, Anode, 
Gate, PMT Voltages

Diffusion (yes or no)?

Temperature

Boundary definition

Geometry/ Sampling 
Points

Field Map

Drift Map

Wall Attachment

Drift velocity

Max dt vs 
field

Wall 
Position 

Field 
Variation

VALID
ATIO

N
?
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FINITE ELEMENT METHOD: FENICS

S DEY 2024

E Field
■ Poisson’s Equation is solved in 

FeniCS 

■ 2D axisymmetric model is used

■ Mesh generated in GMSH

○ Manual setting of mesh
○ More points sampled in 

regions where non-uniform 
fields expected 

Interpolate fi
elds 
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LZEF

S DEY 2024

Initial Meshing 
in GMSH

FeniCS

Field Map 

1
2
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LZEF

S DEY 2024

Region of greater 
irregularity

Towards more 
parallel field lines

Initial Meshing 
in GMSH

FeniCS

Delaunay Triangulation 
in QHULL: Re-Meshing

■ Points are sampled from along 
field lines/ drift trajectories 

■ If field is very different to the 
mean field then tighter meshing

Field Map 

1
2
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LZEF

S DEY 2024

Region of greater 
irregularity

Towards more 
parallel field lines

Initial Meshing 
in GMSH

FeniCS

Delaunay Triangulation 
in QHULL: Re-Meshing

■ Points are sampled from along 
field lines/ drift trajectories 

■ If field is very different to the 
mean field then tighter meshing

Drift Map (S2 R)

Electron bombs 
from each point in 
modified mesh → 

bidirectional 
mapping until a 

boundary is 
reached produces 

drift trajectories 

Field Map 

1
2
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MORE MODEL DETAILS
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■ Anode plate → correction to gate 
voltage to reproduce the correct 
fields 

■ Woven → Concentric grids requires 
½ pitch to reproduce correct fields > 
1 pitch from grids

MORE MODEL DETAILS

Anode Plate
Gate Grid

Cathode Plate

146 cm

146 cm

■ Axisymmetric (PMTs = annulus, 
wires = rings)
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MORE MODEL DETAILS

Anode Plate
Gate Grid

Cathode Plate

146 cm

146 cm

■ Modelled with deflection

0.32 mm

0.36 mm

1 mm
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FIELD-VELOCITY RELATIONSHIP IN LXE

S DEY 2024

■ Non-trivial relationship 
between p,T,V and drift 
velocity in LXe 

■ Can see slight deviation 
from NEST (blue line & 
band)

■ New parameterisation 
was used in LZEF to 
improve data-sims max 
drift time match

Select cathode and gate alpha populations: 
■ Point-like interactions
■ Gate: S2 pulses minimally affected due to diffusion  

NEST fit 2.6%

New Parameterisation 0.78%

Deviation from Data
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Vdrift = z/𝚫t
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THE WALL

S DEY 2024

S2 space real space

(rS2, tS2)
(rmap|S2, tmap|S2)

(rRe, zRe)
(rmap|Re, zmap|Re)

zmax

■ S-shape of wall in S2-reconstructed space due to field inhomogeneities, ICV 
shape & diffusion 

■ Field map informs the translation between S2 r & physical r via the drift map 
17



DATA-SIMS COMPARISON

S DEY 2024

Wall Boundary Calculation

■ Calculation: Middle Radial distribution half max at drop 
off = wall radius for any drift time bin 

■ Right No significant time evolution observed over 6 
months in data, we can try and replicate in simulations

■ Left Do the wall boundary match for simulations and 
data? NOT YET! What are we missing?
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Data wall

No Charge Wall

■ Can simulate wall position & compare with data



PTFE CHARGE ACCUMULATION

S DEY 2024

No Wall Charge Wall Charge Distribution

Fractional Variation in Wall Position

■ New Hypothesis: Electrons attracted to PTFE, wall charging?

■ Apply charge density on rings in drift time slices on the PTFE 
walls

■ Minimise residual of sims vs data wall boundary calculation 

QAve ~ -0.8 µC/m2

LUX ~ 3-4 µC/m2 
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S DEY 2024

■ Left Agreement between the simulated and observed data wall positions!

■ Field map middle shows variation of field with r (negligible < 1%) & z (~18%)

■ Attachment Probability right: The probability that an electron generated at 
a certain point in r,z gets “lost” to the wall (i.e. doesn’t make it up to the ER) 
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CIV ~ 0.3 %

Charge 
insensitive 
volume

Data wall

PTFE CHARGE ACCUMULATION



83mKR COMPARISON 

S DEY 2024

Recombination is E field dependent: 

■ Field dep. kicks in for ERs > 10 keV 
○ (low recombination)

■ In Kr83m, two decay modes
○ 32.1 keV (S1a) Field-dep.
○ 9.4 keV (S1b) ~Field-indep.

With a weaker field → more recombination
■ S1 is enhanced 
■ So S2 is suppressed 

■ 83mKr: S1b/S1a should increase with field
○ Ratio means S1 systematics 

“cancels”

Can see similar trend in field variation 
with r,z but what about the differences?
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83mKr-Derived Field Variation

Cross-check simulations to data



CONCLUSIONS

E fields are important!

■ Changes in the wall 
position can affect the 
resulting field and drift 
maps significantly 

■ This changes our 
understanding of 
reconstruction, which 
could affect a WIMP 
search

Currently in LZ, we 
have achieved a good 

match between 
simulations & data

Time evolution and 𝚽 
dependent studies in 

progress
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WALL ATTACHMENT

S DEY 2024

CIV ~ 0.3 %

Field shaping rings → scalloping right
■ Potential wells forming trapping electrons
■ Pure geometric effect

With charge on PTFE, wells enhanced
Also charge loss from events near wall
■ Pb-206, U-238, Th-232, Co-60 on wall
■ Rn and Xe daughters near wall
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