Boosted Dark Matter Exploring sensitivity in the DarkSide detectors

Zoë Balmforth • Royal Holloway, University of London 10th April 2024 • Joint APP, HEPP & NP IOP conference

The DarkSide-20k detector: a dual-phase argon direct detection experiment

Dark matter direct detection: what are we looking for?

Motivating boosted dark matter: looking beyond the $\Lambda\text{-}\mathsf{CDM}$ model

4

$\Lambda\text{-}\mathbf{CDM}\ \mathbf{model}$

Predicts several properties of dark matter

Dark matter non-relativistic at freeze out

BUT no observations of particle dark matter to date

Boosted dark matter: a two component model

Two component model

2 dark matter components: $\chi_0 \& \chi_1$ ($m_0 > m_1$)

 χ_1 created by χ_0 self-annihilation: $\chi_0 \overline{\chi_0} \rightarrow \chi_1 \overline{\chi_1}$

Dominant χ_0 , subdominant χ_1 , only χ_1 couples to SM

10/04/2024

I.

https://doi.org/10.1016/j.physletb.2018.03.043

Boosted dark matter: expected interactions

Elastic scattering

Target: e^- or nucleus

Inelastic scattering

 χ_1 scatters to an unstable particle (χ_2) following interaction in detector

 χ_2 decays back to $\chi_1 \longrightarrow$ detector resolution limits if this is detectable or merged with primary interaction

Poisson counting limit: zero background 90% CL

Elastic nuclear recoils: expected BDM event rate

 $m_1 = 5 \, {\rm GeV/c^2}$

	% of spectrum above threshold		
Spectrum	$v_{min} = 293 \text{ km/s}$	$v_{min} = 656 \ \mathrm{km/s}$	$v_{min} = 927 \ \mathrm{km/s}$
$\gamma = 1$ (blue)	86.47	32.36	0
$\gamma = 2 \; ({ m green})$	96.62	83.09	66.18
$\gamma=5~({ m red})$	99.46	97.29	94.59
$\gamma = 10$ (yellow)	99.86	99.32	98.65

Energy spectra: boosted dark matter signal

Backgrounds: sources and mitigations

Detector response: ionisation spectra

Shaded bands represent systematic errors

Projected sensitivity: DarkSide-50

Zoë Balmforth

10/04/2024

APP, HEPP & NP IOP conference

DS-20k sensitivity in progress

Conclusions & future work

- DarkSide-50 and DarkSide-20k: both use LAr to search for GeV TeV scale WIMPs
- Two-component boosted dark matter model presented

-> dark matter velocity boosted, generates higher energy recoils, allowing lower DM masses to be probed in existing detectors

Projected sensitivity presented for DarkSide-50

-> Sensitivity gained at lower masses

- Zero background sensitivity in DarkSide-20k shows promising potential
 - -> 2 4 orders of magnitude increased sensitivity compared to DarkSide-50

-> PLR in progress

What is Boosted Dark Matter? **BDM** formation and properties

- 2 DM components: dominant χ_0 and subdominant χ_1 $m_0 > m_1$
- χ_1 forms by self-annihilation of χ_0 in galactic centre: $\chi_0 \overline{\chi_0} \rightarrow \chi_1 \overline{\chi_1}$
- χ_1 is kinematically Lorentz boosted (γ_1) due to mass difference between 2 components
 - higher energy ($E_1 = \gamma_1 m_1$) compared to equivalent 'normal' DM with mass m_1 , allowing lower masses to be probed
- Only χ_1 couples to SM
 - BDM could then be detected via e^- or nuclei scattering in terrestrial detectors
 - Paper refs

Expected event rate

$$\sum_{v_{\min}} \frac{d\sigma}{dE_r} f(v; v_E) |v| d^3 v$$

Expected flux

