

SoLAr detector prototyping

Guilherme Ruiz Ferreira, University of Manchester On behalf of the SoLAr collaboration

IOP, 08-11 Apr 2024

The SoLAr detector

Challenges

- Achieve an excellent energy resolution
- Low-energy background mitigation strategy
- Neutrino flavour tagging
- Identify neutrino direction (angular resolution)
- Calibration at MeV energies across the detector
- An efficient event reconstruction for online triggering

Physics motivation

- Detecting the Solar ⁸B and hep neutrino fluxes via both CC and ES reactions
- Detecting Supernova neutrino bursts
- Detecting other processes in the MeV scale

Guilherme Ruiz - University of Manchester

Novel detector concept

SolAr

- Pixelated readout providing true 3D reconstruction from both charge and light
- Integrated array of VUV SiPMs on anode plane
- Easily scalable for a kiloton-scale LAr-TPC
- Online localized triggering for dealing with high data rates

Existing SoLAr prototypes

1) Small scale v1 - October 2022 @ The University of Bern

- $7x7 \text{ cm}^2$ anode plane, 5 cm drift 3 stacked PCBs
- 16 Hamamatsu ceramic packaged VUV SiPMs with connector pins
- 4 LArPix v2a chips
- Observed cosmic muon tracks

2) Small scale v2 - July 2023 @ The University of Bern

- 30x30 cm² anode plane, 30 cm drift single PCB
- 64 Hamamatsu SMD packaged VUV SiPMs
- 20 LArPix v2b chips slots for 64 chips
- Observed cosmic muon tracks and ⁶⁰Co gamma source

SoLAr V2 prototype

- 30x30 cm² anode plane
- 64 SMD packaged VUV SiPMs
- 6840 3*x*3 mm² pixels

Solar

• 500 V/cm electric field

SMD SiPMs are V2's biggest advantage over V1

- No need for stacked PCBs to fit connector pins
- No ceramic mount distorting electric field lines and taking up pixel space

SoLAr V2 run

Readout diagram

SolAr

SoLAr V2 run

Overview

Solar

- 1. Achieved good LAr purity
- 2. Achieved very low charge hit threshold $\sim 3.8 \text{ ke}^- \rightarrow 100 \text{ keV}$
- 3. 85.7% of the charge events found a corresponding light event match within a search window of 10 μs
- Two days of cosmic run with nominal 15 kV HV
- Special ⁶⁰Co source run
- Special runs with 7.5 kV and 3.75 kV HV
- Special runs with varied SiPM bias over voltage

Data Processing

Reconstruction methods

Charge tracks fitting

1. DBSCAN clustering

SolAr

- L) Cluster hits in the *xy*-plane
- 2) Determine the intervals in *z* between clusters
- 3) Generate fake data filling dead areas withing the z intervals
-) Cluster hits + fake data in the xy-plane
- 5) Cluster hit labels from first stage with hit *z*-coordinates
- 6) Remove fake data

2. RANSAC regression

- Fit line to clustered hits
- Use hit charge as weight for line fit
- Optionally re-cluster and fit outliers to find secondary tracks

dQ/dx is obtained by defining same sized stacked cylinders along the fitted tracks

Light "track" fitting

- 1. Obtain light signal *xy*-coordinates
 - Select top 5 SiPMs with largest light signal
 - Minimum of 3 SiPMs with non-zero signal
 - *x* and *y* are determined by SiPM's coordinates
- 2. Estimate light signal *z*-coordinate
 - Average the *z*-coordinate of the charge hits within the SiPM's quadrant
 - Use total average z-coordinate if no hits in the SiPM's quadrant
 - Average is weighted by hits charge

3. RANSAC regression

- Fit line to light coordinates
- Fit quality depends strongly on angle of incidence to anode

Light fit is a coarse approximation to the charge track and is expected to be approximately parallel to it

Guilherme Ruiz - University of Manchester

Data Processing

SolAr

Single cosmic ray event

Integrated charge and light event display

Single track dQ/dx plot showing gap in dead area

Crosses indicate quadrants with dead chips. 1 chip = 1 quadrant with 60 pixels

2D event charge vs. light Both axis in log scale

Analysis

~80 minutes of cosmics – all single-track events

- Score indicates "goodness of fit". Shorter tracks are not well fit
- Fit quality doesn't affect total event light and charge

Solar

~80 minutes of cosmics – all single-track events

300 - 250 integral [p.e. - Log] 10 00 Track length [mm] 10^{2} Total Light 100 - 50 105 10⁶ Total charge [e - Log]

Mean Light vs. Charge per 1mm track length step

For every 1mm step in track length, plot mean light vs. charge

• Scattering on large tracks due to low statistics

Peaks in track length correspond to peaks in light vs. charge

MANCHESTER 1824 The University of Manchester

Analysis

SolAr

Dead area map and angle of incidence

- Peaks in track length appear to be due to dead areas in the anode plane
- Short tracks could be due to tracks that cross only a corner of the live area

Analysis Single tracks fully crossing the TPC

• Mean $dQ/dx \approx 4.6 \text{ ke/mm}$

Solar

• Measured electron lifetime from cathode/anode crossers: 1.828ms

2D event charge vs. light

Both axis in log scale

Analysis

Solar

Track reconstruction from light

- A cut at 30 mm eliminates short tracks, likely confined to a single SiPM quadrant.
- The light fit depends strongly on the angle of incidence of the track to the anode.
 - Luckily most tracks have a shallow angle to the anode
- Light "tracks" have lower granularity than charge tracks but result in a similar direction
- Increasing the light threshold removes events without improving the cosine distribution

The direction of the light fits align well with their charge track counterparts!

Proposed SoLAr prototypes

Small scale prototype

• Custom-made SiPMs with charge pads mounted on top of photosensitive cell

Solar

 Test of alternative readout chips when available, i.e.
LightPix
Q-Pix

Mid scale Demonstrator

- 2025-2028 prospect at Boulby Underground Laboratory
- Few-ton scale LAr detector underground
 - \circ 1100 m overburden
- 1.6 x 2.6 x 2 m³
 - 1 m drift distance
- 30x30 cm² readout anode tiles
 ≈ 6400 pixels per tile
- First measurement of flavor tagged solar neutrinos in LAr

Boulby Underground Laboratory

Summary

- $\,\circ\,$ SoLAr is the first integrated light and charge detector
- $\,\circ\,$ V2 prototype produced essential data to support the concept
- V2 data analysis is still ongoing but progressing fast
 - Most charge events are correctly matched to their light counterparts
 - Reconstructing events required refined methods due to large areas without charge pixel coverage
 - Track reconstruction from charge is performing remarkably well
 - Light "tracks" are in reasonable agreement with their respective charge counterparts
- SoLAr is a rapidly growing project with much more to come!

Thank you!

Guilherme Ruiz - University of Manchester

Backup Slides

SoLAr

SoLAr V1 prototype

SolAr

ArgonCube cryostat @LHEP - University of Bern

Solar

V2 run used the fully instrumented and automated ArgonCube cryostat, which can cool and filter the Argon!

Light readout diagram

SolAr

Charge readout diagram

Solar

LArPix chips form a "Hydra" network

- Only root chips communicate with PACMAN
- Root chips must not be neighbors
- Remaining chips connect through one or more neighbor chips
- All connected chips have a single root chip

FAQ

Solar

- DBSCAN parameters:
 - xy_epsilon = 8 mm (2 pixels)
 - Z_epsilon = 8 mm
- RANSAC parameters:
 - Residual_threshold = 6
 - Max_trials = 1000
- RANSAC has random component and may not always return the same fit
- Cylinder parameters are determined dynamically but bound by DBSCAN parameters

Cylinder parameters

dh estimation

SoLAr

 $dl \hat{u} = [xy_epsilon (\hat{x} + \hat{y}) + z_epsilon \hat{z}]$

 $dh = dl (\hat{u} \cdot \hat{v})$

Cylinder parameters

dr estimation

SoLAr

Minimum dr is bound to $\frac{dl}{4}$

Light to charge z-coordinate estimation

