
Sterile Neutrino Oscillation Searches using VALOR at SBND

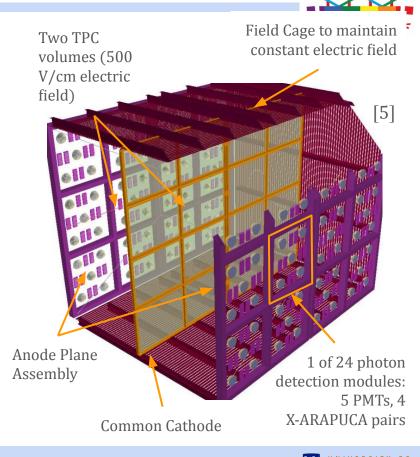
Beth Slater

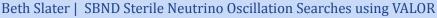
on behalf of the SBND collaboration IOP Joint APP, HEPP, and NP Conference, 10th April 2024

- Sterile Neutrinos
- Short Baseline Near Detector
- What is VALOR
- Current Sensitivities
- SBND-PRISM

2

Sterile Neutrinos



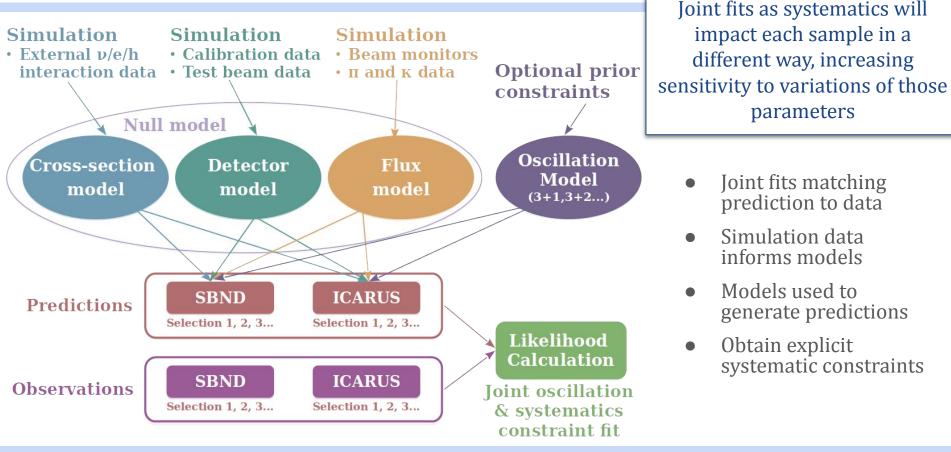

- Experimental anomalies may hint at a fourth neutrino
 - Gallium: deficit of v_{ρ} flux from Ar-37 and Cr-51 electron capture decays.
 - Accelerator (LSND and MiniBooNE): excess of (anti-) v_e flux from $v_{\mu} \rightarrow v_e$
- Limit of 3 active flavours from the Z-boson resonance width and cosmological data
 - 4th active flavour ruled out at a 98% confidence level by ALEPH in 1989^[1]
 - Cosmological limits give $N_{eff} = 3.32 \pm 0.27 (68\% \text{ CL})^{[2]}$
- Tensions between anomalous results and disappearance analyses ^[3]
- 3 active + 1 sterile is benchmark hypothesis
- Test existence via mixing with active flavours

Short Baseline Near Detector

- One of three liquid argon TPC detectors along the BNB
 - Short Baseline Neutrino (SBN) program at Fermilab
- Physics aims:
 - Search for sterile neutrino oscillations at the eV mass-scale
 - Studying neutrino-argon interactions
 - Searching for new physics in the neutrino sector ^[4]
- SBND will measure about 2 million neutrino-argon interactions each year

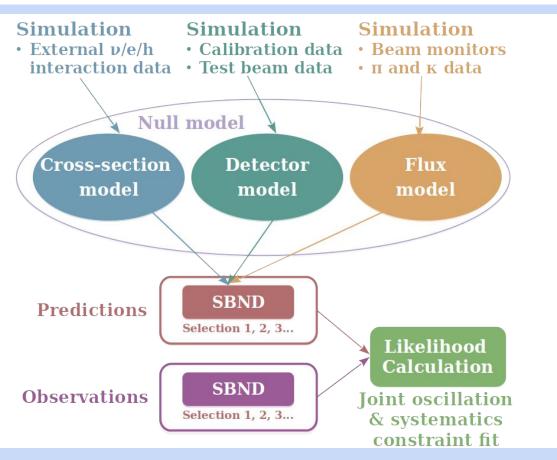
Role of SBND in the SBN Programme

- SBN will definitively test the parameter space favoured by previous measurements
- Our predictions have a-priori uncertainties ~30%
 - Too large to search for new physics
 - Need to reduce to $\sim 1\%$
- The role of SBND is to reduce uncertainty to enable new physics searches
 - The detector will fully characterise the neutrino flux and neutrino-Argon cross-section
- Will need powerful analysis framework to fully exploit the power of SBND samples



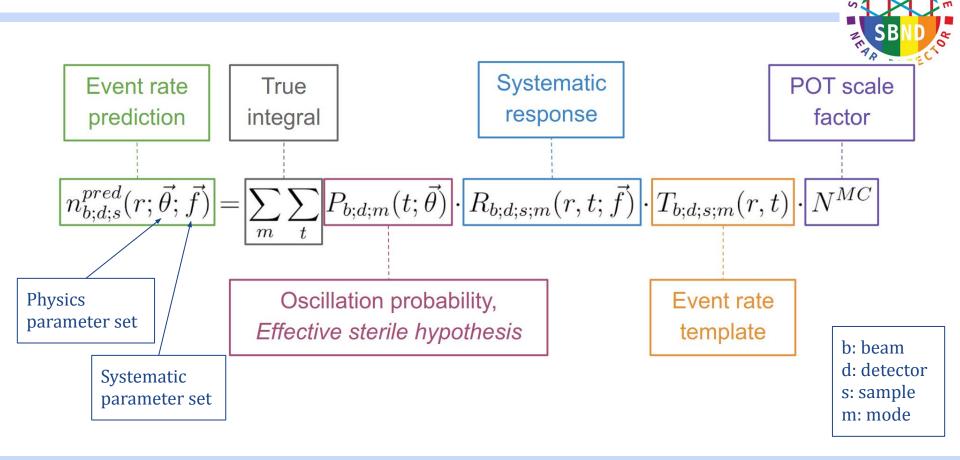
- Well established and tested neutrino fitting framework ^[6]
- Developed within T2K and used for many published results ^[7]
- Can perform single and multi-oscillation channel analyses
- VALOR can fit multiple different inclusive or exclusive samples for all detectors
 - Complementary information from different samples helps solve the degeneracies between systematic effects and/or new physics
- VALOR simultaneously fits for oscillation and systematic parameters
 - Provides explicit constraints on systematics

VALOR: Global Analysis Strategy



7

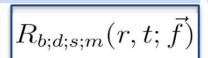
VALOR: Analysis Strategy



RESBND OF TECT

This presentation will focus on fits using only SBND assuming no oscillations No far detectors are used, unless clearly stated

VALOR: Event Rate Prediction



.

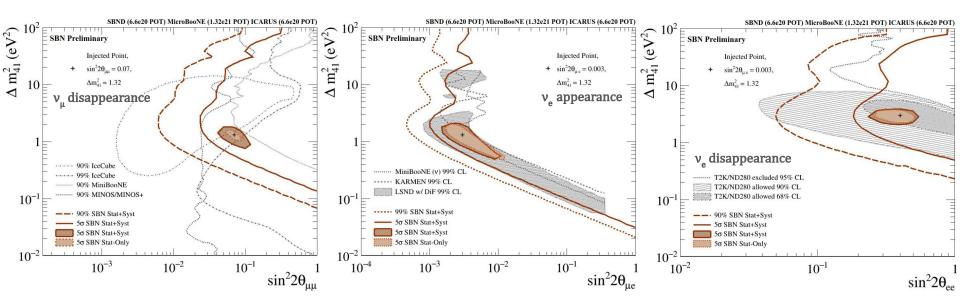
LIVERPOOL

VALOR: Systematic Parameters

Uncorrelated Parameters:

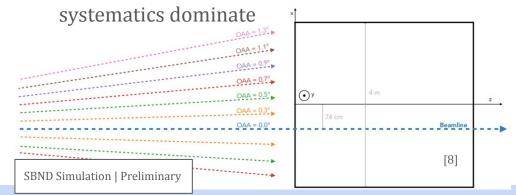
- We construct Response Functions (splines) to encapsulate the impact of nσ variations on every 2D template bin, interaction mode, and beam•detector•sample configuration
- Allows for mode-dependant variations and unique granularity
- Systematic parameters are currently eliminated via profiling
 - Option to use marginalisation

Correlated Parameters:

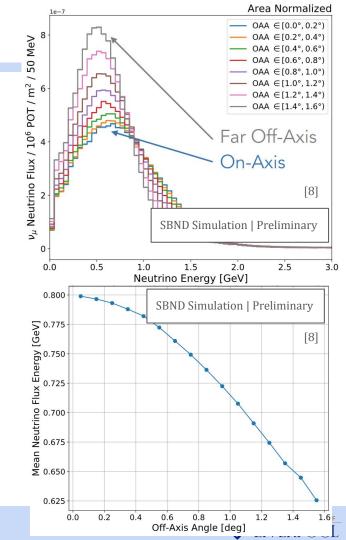

- We construct Covariance Matrices
- There is development to build multidimensional response functions

Preliminary Sensitivities

- VALOR has been used within SBN for several years
 - Implemented several oscillation sensitivity analyses
 - Below are the standard sensitivities for the 3 standalone channels
 - Using inclusive samples and pseudo-reconstruction

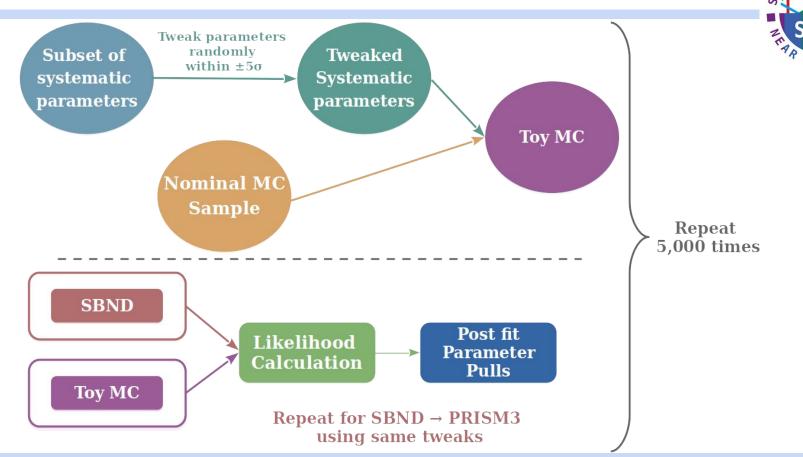


- VALOR oscillation fits obtains explicit post fit parameter pulls for every systematic parameter on every interaction mode
- We can therefore analyse fitting failure modes in great detail and use it to inform targeted modifications to the analysis procedure
 - Improve interaction systematic constraints→ Fit combinations of exclusive and semi-exclusive topologies
 - Improve flux systematic constraints \rightarrow Fit combinations of off-axis bins (PRISM)



SBND-PRISM

- Takes measurements at different off-axis locations
 - Different energy spectra/composition
- Joint fit of all off-axis samples
 - Improved systematic constraints/degeneracy resolution
 - Enhanced oscillation sensitivity
- SBND split into 8 angular bins for illustration
 - \circ The statistics in each bin are still large so the

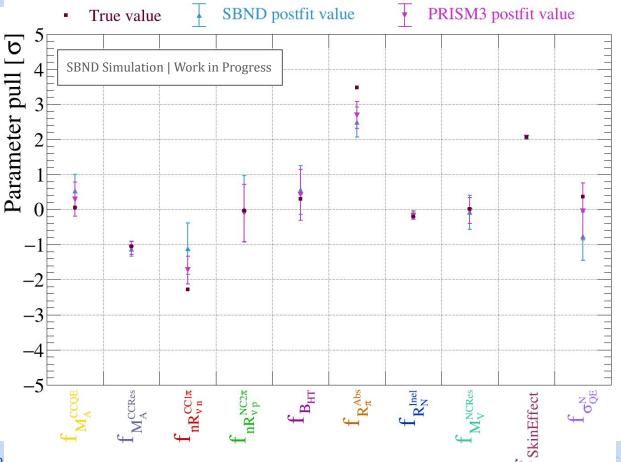

Improvements with PRISM

- PRISM3 defined as SBND split into 3 angular bins
 - Split so each has approximately even statistics
- SBND defined as standard whole detector approach
 - Integrated across all off axis angles
- Subset of the full cross-section and flux systematic parameter list were chosen

 See <u>backup</u>
- Aim to test:
 - Whether analysis is capable of correctly determining applied tweaks by assigning:
 - Appropriate parameter pulls
 - Sensible corresponding uncertainties
 - Whether the PRISM3 inclusive fits perform better than the standard SBND inclusive fits

Testing Analysis Improvements Procedure

Beth Slater | SBND Sterile Neutrino Oscillation Searches using VALOR


a b

DF

Postfit Parameter Pulls Comparison

- Example postfit parameter pulls from a single set of tweaks
- Parameter pulled to "True Value"
- Test whether the postfit SBND/PRISM3 errors encompass the true value

Results Table

SBND

SBND Simulation | Work in Progress

The number of SBND and PRISM3 fits which
correctly found the true parameter pull,
within the assigned postfit uncertainty.
\circ Ordered from most to least according to the
SBND fits.
 5,000 fits for each setup
• Total correct is out of 50,000
■ 5,000 × 10 parameters
In all parameters, the number of correct pulls is greater for the PRISM3 setup than

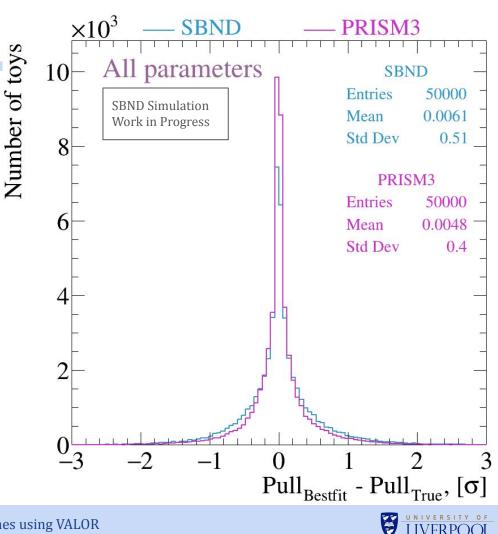
Parameter	SBND	PRISM3
$\mathbf{f}_{SkinEffect}$	4742	4915
$\mathbf{f}_{M_A^{CCRes}}$	4564	4817
$\mathbf{f}_{R_N^{Inel}}$	4535	4941
$\mathbf{f}_{nR_{\nu n}^{CC1\pi}}$	4260	4792
$\mathrm{f}_{R^{Abs}_{\pi}}$	4225	4673
$\mathbf{f}_{M_V^{NCRes}}$	3928	4286
$\mathbf{f}_{M_A^{CCQE}}$	3885	4048
$\mathrm{F}_{\sigma^{N}_{QE}}$	3637	4252
$\mathbf{f}_{nR_{\nu p}*NC2\pi}$	3502	3775
$\mathbf{f}_{B_{HT}}$	3247	3384
Total	40525	43883

H

UNIVERSITY OF LIVERPOOL

Summary of Results

- How many parameters had their pull assigned correctly X% out of the 5,000 fits
 - Out of the 10 systematic parameters
 - Within postfit uncertainty
- What proportion of all parameters pulls did each analysis assign correctly
 - Out of 50,000 total pulls
 - Within postfit uncertainty


SBND Simulation | Work in Progress

Correct Pulls	$<\!80\%$	80-90%	>90%	Overall Pulls Correct
	of Fits	of Fits	of Fits	Overall r ulls Correct
SBND	5	2	3	81%
PRISM 3	2	3	5	88%

Resolution

- Pull_{Bestfit}–Pull_{True} in units of the prefit uncertainty, σ_{Prefit}
 - Value of 0 indicates correct pull Ο
 - Does not account for postfit Ο uncertainty on the pull
- Resolution improves when moving from SBND to PRISM3 fits
 - Improvement in Std Dev quantifies Ο this $(0.5 \rightarrow 0.4)$
- There is the same effect when looking at each parameter individually

LIVERPOO

- SBN programme should improve understanding of sterile hypothesis
- SBND will have **excellent statistics** as the event rate is high
 - Used to constrain systematic uncertainties
- The use of SBND-PRISM was demonstrated to consistently improve systematic constraints for a variety of dominant parameters
 - PRISM has been implemented in VALOR for all 3 oscillation channels
 - Ongoing work to validate this and to find optimal number of off-axis bins and understand improvements to sensitivities
- Many other lines of work within VALOR to incorporate exclusive samples and evaluate uncertainties and biases within mock data

Thank you for Listening

Any Questions?

Beth Slater | SBND Sterile Neutrino Oscillation Searches using VALOR

21

References

- 1. ALEPH, D. Decamp et al., Determination of the Number of Light Neutrino Species, Phys. Lett. B 231, 519 (1989)
- On the behalf of the Planck Collaboration. Cosmological constraints on neutrinos with Planck data. In Boston, Massachusetts, USA; 2015 [cited 2023 Jun 22]. p. 140001. Available from: https://pubs.aip.org/aip/acp/article/907472
- 3. Dasgupta B, Kopp J. Sterile Neutrinos. Physics Reports. 2021 Sep;928:1–63.
- 4. Machado PAN, Palamara O, Schmitz DW. The Short-Baseline Neutrino Program at Fermilab. Annu Rev Nucl Part Sci. 2019 Oct 19;69(1):363–87.
- 5. Jones R. Status of the Short Baseline Near Detector at Fermilab. ICHEP 2022.
- 6. VALOR Neutrino Fit [Internet]. hep.ph.liv.ac.uk. [cited 2023 Jun 22]. Available from: https://hep.ph.liv.ac.uk/~costasa/valor/
- 7. Andreopoulos C. VALOR Neutrino Fit [Internet]. hep.ph.liv.ac.uk. [cited 2024 Mar 26]. Available from: https://hep.ph.liv.ac.uk/~costasa/valor/#results_t2k
- Del Tutto M, Machado P, Kelly K, Harnik R. SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector. In: SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector [Internet]. US DOE; 2021 [cited 2023 Jun 22]. Available from: https://www.osti.gov/servlets/purl/1827399/

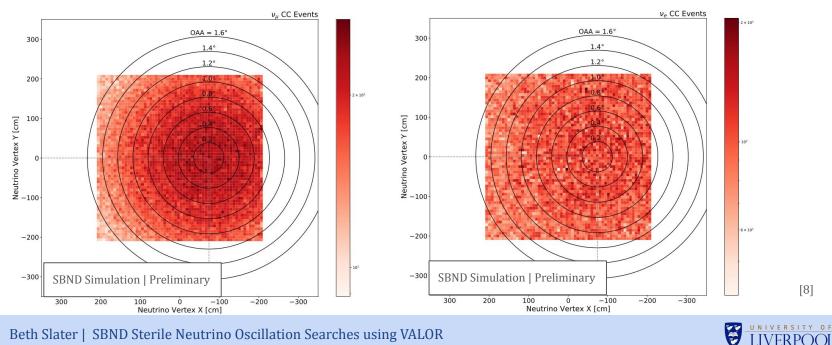
Backup

Beth Slater | SBND Sterile Neutrino Oscillation Searches using VALOR

Likelihood Calculation

$$\chi_{0}^{2} = -2 \ln \mathscr{L}_{0}(\vec{\theta}; \vec{f}) = 2 \sum_{b,d,s,r} \left(n_{b;d;s}^{data}(r) \cdot \ln \frac{n_{b;d;s}^{data}(r)}{n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f})} + (n_{b;d;s}^{pred}(r; \vec{\theta}; \vec{f}) - n_{b;d;s}^{data}(r)) \right)$$

$$\chi^{2} = -2 \ln \mathscr{L}(\vec{\theta}; \vec{f}) = -2 \ln \mathscr{L}_{0}(\vec{\theta}; \vec{f}) - 2 \ln \mathscr{L}_{0}(\vec{\theta}; \vec{f}) - 2 \ln \mathscr{L}_{phys}(\vec{\theta}) - 2 \ln \mathscr{L}_{syst}(\vec{f})$$
Penalty term due to prior physics constraints
$$\chi_{phys}^{2} = -2 \ln \mathscr{L}_{phys}(\vec{\theta}) = 0$$
Penalty term due to prior systematic constraints
$$\chi_{syst}^{2} = -2 \ln \mathscr{L}_{syst}(\vec{f}) = -2 \ln \mathscr{L}_{syst}(\vec{f}) - 2 \ln \mathscr{L}_{syst}(\vec$$


SBND-PRISM: Flux

[8]

LIVERPOOL

- Muon neutrino flux decreases moving off axis
- Electron neutrino flux remains almost constant

Beth Slater | SBND Sterile Neutrino Oscillation Searches using VALOR

Subset of Systematic Parameters for Pull Studies

- Subset of systematic parameters chosen for pull study to quantify improvement by using the PRISM technique within SBND.
 - 8 interaction parameters
 - 2 flux parameters

Parameter	Description			
Interaction Parameters				
$f_{M_A^{CCQE}}$	Axial mass for CC quasi-elastic			
$f_{M_A^{CCRes}}$	Axial mass for CC resonance neutrino production			
$f_{nR_{\nu n}^{CC1\pi}}$	Non-resonance bkg normalisation in νn CC 1π reactions			
$f_{nR_{\nu p}*NC2\pi}$	Non-resonance bkg normalisation in νp NC 2π reactions			
$f_{M_V^{NCRes}}$	Vector mass for NC resonance neutrino production			
$f_{B_{HT}}$	Higher twist parameter B for NC and CC DIS events			
$f_{R_{\pi}^{Abs}}$	Intranuclear absorption fraction for pions			
$f_{R_N^{Inel}}$	Intranuclear inelastic re-scattering fraction for nucleons			
	Flux Parameters			
$f_{\sigma^N_{QE}}$	Secondary nucleon interactions in the target (Be) and			
	horn (Al), quasi-elastic cross section			
$f_{SkinEffect}$	Depth that the current penetrates the horn current			

