Sensitivity at ANUBIS

Anna Mullin University of Cambridge

Collaborators: Oleg Brandt, Martin Bauer, Paul Swallow, Sofie Nordahl Erner, Théo Reymermier

IOP CONFERENCE

APRIL 2024

Sensitivity to LPS

New physics at the LHC

- 1. Massive new particles at high collision energies
- 2. Enough rare particles at high luminosity for "discovery"
- 3. General-purpose detectors to probe large signal phase space

Large Hadron Collider

Aim: set limits on parameter space for interesting models

Long-lived particles

Small decay width

Small matrix element

$$d\Gamma \sim \frac{1}{M} |\mathcal{M}|^2 d\Pi$$
 Limited phase space Mass

Distinctive component of many new (& current) physics models

LLPS

Discovery potential at the LHC?

ATLAS + CMS designed for "general purpose", but not targeting LLPs

Some limitations:

- Main detectors are close to the IP
- Lose LLPs with smaller SM couplings (feebly interacting particles)
 Lose LLPs outside sensitive mass range (e.g. backgrounds in ATLAS & CMS are
- Lose LLPs outside sensitive mass range (e prohibitive for LLP masses < ~10 GeV)

 $25\,\mathrm{m}$

IOP 2024

ATLAS detector scale

44m

Various searches at LHC, but limited coverage of HNL models

We will benefit from a new LLP detector at collider energies

E.g. a typical model class: Heavy Neutral Leptons (HNL) ("N")

Channel
Prompt SS dilepton $pp ightarrow \ell^\pm_lpha N ightarrow \ell^\pm_lpha \ell^\pm_eta + nj$
Prompt OS dilepton $pp o \ell_lpha^\pm N o \ell_lpha^\pm \ell_eta^\mp + nj$
Prompt trilepton $pp ightarrow \ell^\pm_lpha N ightarrow \ell^\pm_lpha \ell^\pm_eta \ell^\mp_\gamma u$
Displaced trilepton $pp o \ell_lpha N, \ N o \ell_eta \ell_\gamma u$

IOP 2024

Lepton flavour	Experiment	M_N (GeV)
$ee/\mu\mu$	CMS	(50, 210)
$\mu\mu$	CMS	(40,500)
$ee/e\mu$	CMS	(40,500)
$ee/\mu\mu$	ATLAS	(100, 500)
$ee/e\mu/\mu\mu$	CMS	(20,1600)
$\mu\mu$	LHCb	(5,50)
$\mu\mu$	LHCb	(5,50)
$eee+ee\mu/\mu\mu\mu+\mu\mu e$	CMS	(1,1200)
$ee\mu/\mu\mu e$	ATLAS	(5,50)
$\mu - e\mu/\mu - \mu\mu$	ATLAS	(4.5,10)
6 combinations of e,μ	ATLAS	(3,15)
6 combinations of e, μ	CMS	(1,20)

A new LLP detector design

- Our example LLP model
- The method to evaluate sensitivity
- Latest results
- Prototype experiment

ANUBLS "AN Underground Belayed In-Shaft Experiment" arxiv: 1909.13022 • Designed to extend sensitivity to LLPs at the LHC

• Evaluate sensitivity reach with updated geometry and isolation selection criteria

IOP 2024

- Unique abilities
 - $\circ\,$ Synchronise clock with ATLAS
 - Harness existing cavern infrastructure
 - Large solid angle coverage close to beam

Trigger in ATLAS then link to ALP event through timing sync

Type of detector: transverse vs forward

ANUBIS is transverse to beamline

Can reach heavier / more strongly interacting LLPs

• Focus on scenarios where unstable "portal particles" link to a hidden sector: HNLs, scalar portal, vector portal, axion

• > 10^8 seconds less constrained by LHC experiments < ~ minutes less constrained by BBN

MATHUSLA and CODEX-b

 Other new transverse LHC LLP detectors • MATHUSLA at CMS, CODEX-b at LHCb

Our approach: --- NA62

--- B factory

-- FASER2 CODEX-h

---- MATHUSLA(200)

arxiv: 2305.01715

--- SHiP

10

 m_N [GeV]

Theory choices:

- MeV-GeV mass particles -> better transverse discovery potential • Minimal model: only switch on HNL-electron coupling (no muon or tau modes) (benchmark by PBC/ FIPs group) • Expect W-->HNL production to dominate for ANUBIS

IOP 2024

neutral leptons

 $\frac{|U_{\tau_N}|^2}{|U_{-6}|^2}$

 10^{-8}

 10^{-10}

Heavy

0.2

Link to a rich hidden sector?

Powerful solution to many open questions, e.g. neutrino oscillations

- (a) Dirac or (b) Majorana neutrinos
 - Dictates observable physics via existence of anti-particle, lepton number violation, etc.
- Mass and coupling parameters --> decay width

PAGE 11

Sensitivity calculation

Methods

- Able to detect and partially reconstruct all decay channels except fuly invisible (tri-neutrino or possible hidden sector)
- First, compute relative branching ratios wrt. mass, couplings
- Evaluate which are dominant in our ideal mass range
- Consider pileup, detector efficiency, ...

IOP 2024

Nethods

- Able to detect and partially reconstruct all decay channels except fuly invisible (tri-neutrino or possible hidden sector)
- First, compute relative branching ratios wrt. mass, couplings
- Evaluate which are dominant in our ideal mass range
- Consider pileup, detector efficiency, ...

IOP 2024

Selections

Detection of jets and charged particle tracks

- Remove events where charged tracks or jets may originate from ISR (background-like)
- Jets must not intersect the ceiling within a nearby radius of the LLP
- Updated geometry cut improves signal efficiency

Branching ratio sensitivity

- Identifies highest sensitivity mass range
- Compares sensitivity to HNL production modes (e.g. W and Z production)
- Compares sensitivity to HNL decay channels (e.g. electrons, neutrinos, jets)
- Work in progress!

Branching ratio sensitivity

pro-ANUBIS

Design, first data & outlook

IOP 2024

- Recent progress: event rate compared with ATLAS luminosity!
- Recording hit timing info to understand muon time-of-flight, timing resolution
- Next steps:
 - $\circ~$ LHC clock sync
 - Trigger data-taking during LHC collisions

Backup

Collaboration

- Only possible due to the support from many institutions, with room for more
- Have prototype data ready to analyze, with many avenues to contribute:
 - LHC Clock synchronization
 - Cosmic measurements.
 - Observe muons from LHC collisions
 - And more!

15

proANUBIS β Sensitivity

- Timing resolution and path length results in $\delta_{\beta} \sim 0.1\%$. -ATLAS resolution is 2-3%.
- Precision measurement of β could help inform dE/dX search (2205.06013).

Mass of heavy	Decay mode of	Mass of heavy	Decay mode of
neutrino (MeV)	heavy neutrino	neutrino (MeV)	heavy neutrino
$\gtrsim \sum_m \nu_m = 10^{-6}$	$N_4 \rightarrow \nu_{\ell_1} \nu_{\ell_2} \overline{\nu_{\ell_2}}$	$> m_{\mu} + m_{\tau} = 1880$	$N_4 \rightarrow \mu^- \tau^+ \nu_\tau + c.c$
			$N_4 \rightarrow \tau^- \mu^+ \nu_\mu + c.c$
$> 2m_e = 1.02$	$N_4 \rightarrow \nu_\ell e^- e^+$	$> m_{\tau} + m_{\pi} = 1920$	$N_4 \to \tau^- \pi^+ + c.c$
$> m_e + m_\mu = 106$	$N_4 \rightarrow e^- \mu^+ \nu_m + c.c$	$> m_e + m_{D_s} = 1970$	$N_4 \rightarrow e^- D_s^+ + c.c$
	$N_4 \rightarrow \mu^- e^+ \nu_e + c.c$		
$> m_{\pi^0} = 135$	$N_4 \rightarrow \nu_\ell \pi^0$	$> m_{\mu} + m_D = 1980$	$N_4 \rightarrow \mu^- D^+ + c.c$
$> m_e + m_\pi = 140$	$N_4 \rightarrow e^- \pi^+ + c.c$	$> m_{D^{*0}} = 2010$	$N_4 \rightarrow \nu_\ell D^{*0}$
$> 2m_{\mu} = 211$	$N_4 \rightarrow \nu_\ell \mu^- \mu^+$	$> m_{\overline{D}^{*0}} = 2010$	$N_4 o u_\ell \overline{D}^{*0}$
$> m_{\mu} + m_{\pi} = 245$	$N_4 \to \mu^- \pi^+ + c.c$	$> m_e + m_{D^*} = 2010$	$N_4 \to e^- D^{*+} + c.c$
$> m_e + m_K = 494$	$N_4 \rightarrow e^- K^+ + c.c$	$> m_{\mu} + m_{D_s} = 2070$	$N_4 \rightarrow \mu^- D_s^+ + c.c$
$> m_{\eta} = 548$	$N_4 \rightarrow \nu_\ell \eta$	$> m_e + m_{D_s^*} = 2110$	$N_4 \rightarrow e^- D_s^{*+} + c.c$
$> m_{\mu} + m_K = 599$	$N_4 \rightarrow \mu^- K^+ + c.c$	$> m_{\mu} + m_{D^*} = 2120$	$N_4 \rightarrow \mu^- D^{*+} + c.c$
$> m_{ ho^0} = 776$	$N_4 \to \nu_\ell \rho^0$	$> m_{\mu} + m_{D_s^*} = 2220$	$N_4 \rightarrow \mu^- D_s^{*+} + c.c$
$> m_e + m_\rho = 776$	$N_4 \rightarrow e^- \rho^+ + c.c$	$> m_{\tau} + m_K = 2270$	$N_4 \rightarrow \tau^- K^+ + c.c$
$> m_{\omega} = 783$	$N_4 \rightarrow \nu_\ell \omega$	$> m_{\tau} + m_{\rho} = 2550$	$N_4 \to \tau^- \rho^+ + c.c$
$> m_{\mu} + m_{\rho} = 882$	$N_4 \to \mu^- \rho^+ + c.c$	$> m_{\tau} + m_K^* = 2670$	$N_4 \to \tau^- K^{*+} + c.c$
$> m_e + m_{K^*} = 892$	$N_4 \rightarrow e^- K^{*+} + c.c$	$> m_{\eta_c} = 2980$	$N_4 \rightarrow \nu_\ell \eta_c$
$> m_{K^{*0}} = 896$	$N_4 \rightarrow \nu_\ell K^{*0}$	$> m_{J/\psi} = 3100$	$N_4 \rightarrow \nu_\ell J/\psi$
$> m_{\overline{K}^{*0}} = 896$	$N_4 \to \nu_\ell \overline{K}^{*0}$	$> 2m_{\tau} = 3550$	$N_4 ightarrow u_\ell au^- au^+$
$> m_{\eta'} = 958$	$N_4 \rightarrow \nu_\ell \eta'$	$> m_{\tau} + m_D = 3650$	$N_4 \rightarrow \tau^- D^+ + c.c$
$> m_{\mu} + m_{K^*} = 997$	$N_4 \rightarrow \mu^- K^{*+} + c.c$	$> m_{\tau} + m_{D_s} = 3750$	$N_4 \rightarrow \tau^- D_s^+ + c.c$
$> m_{\phi} = 1019$	$N_4 \rightarrow \nu_\ell \phi$	$> m_{\tau} + m_{D^*} = 3790$	$N_4 \rightarrow \tau^- D^{*+} + c.c$
$> m_e + m_\tau = 1780$	$N_4 \rightarrow e^- \tau^+ \nu_\tau + c.c$	$> m_{\tau} + m_{D_s^*} = 3890$	$N_4 \to \tau^- D_s^{*+} + c.c$
	$N_4 \to \tau^- e^+ \nu_e + c.c$		
$> m_e + m_D = 1870$	$N_4 \to e^- D^+ + c.c$		

Table 6: Decay modes of heavy Majorana neutrino based on its mass m_4 .

arxiv: 0901.3589