First measurement of high-mass $t\bar{t}\ell\ell$ and LFU-inspired EFT interpretations with the ATLAS detector

Gianna Loeschcke Centeno gianna.loeschcke.centeno@cern.ch

University of Sussex

10.04.2024

Top quark measurements with ATLAS

- Top quark is the heaviest fundamental particle
 → special role to probe SM:
 - measure top coupling to other particle (such as Yukawa coupling)
- Large collected data set of proton-proton collisions (140 fb⁻¹) allows for precision measurements of rare processes, such as $t\bar{t}V$ with $V = \gamma, Z, W$

Effective field theory

- Search for deviations from SM in model independent way
- Assume that energy scale of new interaction much larger than considered energy
 - can neglect momentum dependence in propagator
 - get an effective coupling independent of exact process (similar to Fermi's description of the β decay)
- Expand Lagrangian with effective coupling in a low energy limit:

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{d,i} rac{c_i^d}{\Lambda^{d-4}} \mathcal{O}_i^d$$

• Cross-section of specific process given by:

 $\sigma = \sigma_{SM} + \sigma_{interference} + \sigma_{BSM}$

• Additionally EFT can have an impact on the shape of some distributions

Motivation for the high-mass $t\bar{t}\ell\ell$ analysis

- Probe effective $t\bar{t}\ell\ell$ coupling
- Target four-fermion EFT operators: currently poorly constrained (CMS top EFT paper: arXiv:2307.15761)
- \bullet Impact of these EFT operators grows with energy \rightarrow focus on high-mass regime
- Binning of signal region: di-leptonic invariant mass of OSSF lepton pair (in case of 2 OSSF pairs take m_{II} closest to Z mass)

- Constrain four-fermion operators $(O_{tl}, O_{te}, O_{Qe}, O^1_{Ql}, O^3_{Ql})$:
 - flavour inclusively
 - separately for $t\bar{t}ee$ and $t\bar{t}\mu\mu$ coupling \to gives access to potential flavour universality violation
- ttlℓ vertex is also one of the contributing processes in B decays (and therefore contributes to R(K*))

EFT parameterisation

- Use MadGraph+Pythia $t\bar{t}\ell\ell$ sample
- Internal MadGraph reweighting of distribution to some non-zero values of different Wilson coefficients
- Use reweighted distributions to parameterise $t\bar{t}\ell\ell$ event yield in each bin as function of WCs

Signal regions

- Use ATLAS $t\bar{t}Z$ measurement as starting point (arXiv:2312.04450)
- Consider 3/ channel with at least one OSSF lepton pair
- High-mass regime: $m_{II} > m_Z + 10 \text{ GeV}$

- Treatment of backgrounds:
 - assume that shape of backgrounds is well modelled by MC (with some modelling uncertainties, such as ME or PS), except for the charge flip background (fully data-driven estimation)
 - determine normalisation of dominant backgrounds from data in background enriched control regions

Gianna Loeschcke Centeno

$t\overline{t}\ell\ell$ Measurement

Good pre-fit data MC agreement

• 2*ISS* CRs targeting $t\bar{t}W$

- CRs split by flavour to disentangle non-prompt backgrounds
- MC predictions underestimate data
 - expected, as measured $t\bar{t}W$ cross-section higher than theory predictions

Non-prompt background estimation

- 3/ CRs targeting heavy and light flavour fake leptons:
 - heavy flavour fake lepton: lepton in heavy quark jet or mimicked by heavy flavour jet
 - light flavour fake lepton: lepton mimicked by light flavour jet
- Regions selecting $t\bar{t}$ and Z jets events
- Loosen lepton reconstruction criteria for one of the leptons to enrich regions in non-prompt leptons

Gianna Loeschcke Centeno

10/14

Non-prompt background estimation

- 3/ CRs targeting conversion electrons:
 - internal conversion: electron from virtual photon undergoing pair-production
 - material conversion: electron from photons converting in detector material
- Regions selecting $Z(\rightarrow \mu\mu)\gamma$ with one *e* events

11/14

CR only fit

- Perform fit without including EFT variations of $t\bar{t}\ell\ell$
- Include only CRs
- Measure normalisation factor of dominant backgrounds
- ttW normalisation factor slightly above current cross-section calculations compatible with ATLAS ttW cross-section measurement (arXiv:2401.05299)
- $t\bar{t}Z$ normalisation factor also compatible with ATLAS $t\bar{t}Z$ cross-section measurement (arXiv:2312.04450)
- Normalisation factors for fake backgrounds mostly close to one

12/14

Preliminary expected results

- $\bullet\,$ Signal regions not yet unblinded $\rightarrow\,$ only expected results
- Not final binning in SRs

WC/Λ^2	1σ Interval
<i>C</i> _{t/11}	[-2.36, 2.71]
<i>C</i> _{t/22}	[-1.78, 2.05]
C _{te11}	[-1.42, 1.76]
C _{te22}	[-1.68, 2.33]
C_{Qe11}	[-2.52, 2.62]
C <i>Qe</i> 22	[-2.18, 2.32]
$c_{Ql^{1}11}$	[-1.68, 2.41]
$c_{Q/^{1}22}$	[-1.60, 2.41]
$c_{Q/^{3}11}$	[-2.40, 1.67]
<i>C_{QI³22}</i>	[-2.40, 1.58]

WC/Λ^2	1σ Interval
C _{tl}	[-1.64, 1.93]
C _{te}	[-1.23, 1.65]
C_{Qe}	[-1.92, 2.03]
$c_{Q/1}$	[-1.31, 2.05]
C_{Ql^3}	[-2.04, 1.31]

- Good constraining power for all operators
- Sensitivity still largely statistics dominated

Gianna Loeschcke Centeno

- Probe SM with EFT approach
- $t \bar{t} \ell \ell$ analysis targets effective $t \bar{t} \ell \ell$ coupling in high-mass regime
- Set constrains on four-fermion operators
- Access potential LFU violation through separate constrains on $t\bar{t}ee$ and $t\bar{t}\mu\mu$

Backup Slides

- Normalisation factors of dominant backgrounds added as free floating parameters
- Additional theoretical and experimental uncertainties added as nuisance parameters in fit:
 - cross-section uncertainties
 - modelling uncertainties (matrix element, parton shower, tune, ...)
 - PDF uncertainties
 - lepton reconstruction uncertainties (trigger, isolation, ID, ...)
 - jet and MET reconstruction uncertainties
 - flavour tagging uncertainties
 - data-driven charge flip estimation uncertainties (statistics, extrapolation, ...)

Fit of difference between flavour specific WCs

- Target potential LFU violation by measuring the difference between $t\bar{t}ee$ and $t\bar{t}\mu\mu$ EFT operators (for example: $c_{t/22} c_{t/11}$)
- Fitting the difference helps to cancel some flavour independent systematics
- Sensitivity to $\Delta(c_{t/22}, c_{t/11})$ worse than for $c_{t/11}$ and $c_{t/22}$ separately
- Results statistics dominated:
 - results for $c_{t/11}$ and $c_{t/22}$ mainly independent
 - canceling of systematics minor effect
- Proof of principle: sensitivity will improve with more collected data

