

Studies on $Z\gamma$ Scattering at 13 TeV with ATLAS Detector

Gitanjali Poddar IOP Joint APP, HEPP and NP Annual Conference 2024

The Standard Model (SM)

- Well-tested theory of fundamental particles and their interactions
 - Complete with Higgs boson discovery in 2012
- However, it has its limitations:
 - Gravity
 - Dark matter and dark energy
 - Masses of neutrinos

New physics? \rightarrow measure deviations from SM predictions

Vector Boson Scattering: Motivation

SM self-couplings of electroweak vector boson ($V = W, Z, \gamma$)

Deviation from self-coupling predicted by SM
New physics!
Existence of neutral quartic self-coupling forbidden by SM

Probe self-couplings \rightarrow **study Vector Boson Scattering (** $VV \rightarrow VV$ **)**

Large Hadron Collider (LHC)

- 27 km ring, 100 m below ground
- Proton-proton* collider
 - 40 million collisions per second

44m

- 4 detectors: ALICE, ATLAS, LHCb, CMS
 - General purpose detector

Operation Timeline

Vector Boson Scattering at LHC

- Characterised by two vector bosons and two jets
- Consists of vector boson self-couplings and coupling of vector boson to Higgs boson

Vector Boson Scattering at LHC (II)

Electroweak Production of Zyjj

Final state: $l^+l^-\gamma$, where $l = e, \mu$ (τ have negligible contribution)

- $2q\gamma$: large hadronic backgrounds*
- $2\nu\gamma$: neutrinos escape without a detectable signal

Best channel to probe forbidden **neutral quartic gauge coupling**

- ZZ: low cross section
- γγ: large background from misidentified photons

https://cds.cern.ch/record/1753849/files/CERN-THESIS-2014-105.pdf

Studies on EW- $Z(\rightarrow ll)\gamma jj$ with ATLAS

2017

- 2012 data $\rightarrow L = 20.2 \text{ fb}^{-1}$
- No evidence of EW- $Z\gamma jj \rightarrow 2\sigma$

2020

• 2015-2016 data $\rightarrow L = 36 \text{ fb}^{-1}$

• Evidence of EW-
$$Z\gamma jj \rightarrow 4.1\sigma$$

2023 (this analysis)

- 2015-2018 data $\rightarrow L = 140 \text{ fb}^{-1}$
- Main goals:
 - Observation of EW-Zγjj
 - First differential cross section measurements of EW- $Z\gamma jj$

Event Selection

Based on typical VBS topology

- Two high energy forward jets: m_{jj} >500 GeV, $|\Delta y|$ >1
- Hadronic activity suppressed between jets: $N_{gap}^{jets} = 0$
- Centrally produced vector bosons: $\zeta(Z\gamma) = \left|\frac{y_{Z\gamma} (y_{j1} + y_{j2})/2}{y_{j1} y_{j2}}\right| < 0.4$

Measurement Strategy

- Signal Region: $\zeta(Z\gamma) < 0.4$
- Control Region: $\zeta(Z\gamma) > 0.4$

 \rightarrow To constrain QCD- $Z\gamma jj$ background

Background

- 1. QCD-*Ζγjj*:
 - Dominant background
 - Constrained in QCD-Zγjj enriched control region
- 2. *Z*+jets:
 - Obtained from data-driven ABCD method based on photon isolation and identification
- 3. *tt*γ:
 - Estimated from simulation, validated in $e\mu\gamma$ control region
- 4. *WZjj*:
 - Estimated from simulation

Systematic Uncertainties

Experimental

- *Zγjj*:
 - Detector reconstruction of photons, leptons and jets
 - Pileup* reweighting
- Estimation of Z+jets, $t\bar{t}\gamma$, WZjj
- Luminosity

- EW-*Ζγjj*:
 - EW-QCD $Z\gamma jj$ interference
 - Theoretical modelling
- QCD-*Ζγjj*:
 - Theoretical modelling

Theoretical

Profile Likelihood Fit

Goal: maximise *L* to estimate its parameters

• Parameter of Interest:

• Unconstrained
$$\mu_{EW} = \sigma_{measured}^{EW-Z\gamma jj} / \sigma_{predicted}^{EW-Z\gamma jj}$$

- Nuisance Parameters:
 - Unconstrained k: normalisation of QCD-Zγjj
 - Constrained θ : experimental and theoretical systematic uncertainties
 - Constrained γ : systematic uncertainty due to finite size of simulation

Results

First observation of EW- $Z\gamma jj$ with ATLAS

Differential Measurements: Motivation

- Improve modelling of EW- $Z\gamma jj$
 - Variables: m_{jj} , $|\Delta y_{jj}|$, p_T^l , p_T^j
- Sensitive to Effective Field Theory studies

• Variables: $p_T^{Z\gamma}, E_T^{\gamma}, |\Delta\phi(Z\gamma, jj)|$

Unfolding

Correcting measured distribution for detector effects

Goal: to perform EW- $Z\gamma jj$ unfolding and measure differential cross-sections

Profile Likelihood Unfolding

Simultaneously constrain normalisation of QCD- $Z\gamma jj$ bin-by-bin

Results

Differential measurements performed first time for EW-VVjj with ATLAS

Statistics dominated uncertainty, results are consistent within 1σ of SM

Results (II)

- First observation of EW- $Z\gamma jj$ with ATLAS
- First differential measurements of EW-VVjj with ATLAS
 - $p_T^{Z\gamma}$ and $|\Delta \phi(Z\gamma, jj)|$ measured differentially for the first time at LHC
- Next: EFT interpretation

Prospectives

<u>Run</u>	Integrated Luminosity	Statistical Uncertainty
Run 2	140	0.09
Run 3	300	0.06
HL-LHC	4000	0.02

• Run 3: improved quark/gluon tagger

• HL-LHC:

- Upgraded inner tracker: extending to larger rapidity
- High granularity timing detector: aid reconstruction of leptons and jets in forward region
- Improved theory modelling and treatment of interference