$H \rightarrow \tau \tau$ differential XS measurement overview IOP-HEPP conference 2024

Eva Guilloton

University of Warwick/RAL

- 1. Introduction
- 2. Analysis strategy
- 3. Main background: Z $\rightarrow \tau \tau$
- 4. Fit setup and current results
- 5. Conclusion

Introduction

Introduction

Why looking at the H $\rightarrow \tau \tau$ decay channel?

- → The H→ $\tau\tau$ has the highest branching ratio to leptons, BR(H→ $\tau\tau$) ≈ 6.3%
- → Fermionic decay modes provide direct measurements of the Yukawa coupling

Higgs Branching Ratio (arXiv:1610.07922)

- → The \(\tau\) lepton is the only lepton heavy enough to allow hadronic decays (65%)
- → The H→ $\tau\tau$ has a relative low background ⇒ Main background: Z→ $\tau\tau$

STXS and Differential Cross section

→ Based on a previous analysis (link):

- * The pp \to H \to $\tau\tau$ total cross-section and per production mode (ggF, VBF, ttH, VH) were measured
- * An STXS measurement in ggF was done which focuses on the p_T^H distribution

Production mode	SM prediction [pb]	Result[pb]
tīH	0.0313 ± 0.0032	0.033± 0.037
VH	0.1176 ± 0.0025	0.115 ± 0.070
ggF	2.77 ± 0.09	2.65 ± 0.85
VBF	0.222 ± 0.005	0.197 ± 0.041
$pp \rightarrow H$	3.17 ± 0.09	2.94 ± 0.41

→ All measurements are in agreement with the SM prediction

 $\sigma_H \times {\rm BR}({\rm H} \to \, \tau \, \tau) \, {\rm relative to the SM expectations in the 9 fiducial volumes defined in the STXS measurement (ArXiv:2201.08269)}$

One of the main goal for the second round analysis:

* Make the first H $\rightarrow \tau\tau$ fiducial differential measurement in ATLAS in the VBF phase space

Analysis strategy

Variables choice

- → Use the VBF production mode to study:
 - * The Kinematics of Higgs boson
 - * The CP properties of Higgs boson
 - * Search for new Physics using an EFT

Variables to unfold:
$$\Delta \phi_{jj}^{signed}$$
, \mathbf{p}_T^H , $\mathbf{p}_T^{j_0}$, $\Delta \phi_{jj}^{signed}$ vs \mathbf{p}_T^H

→ Unfolded distributions will be used for SMEFT interpretations

- ★ △φ_{jj} CP sensitive to the Higgs Gauge coupling
- * Good sensitivity to possible BSM effects for \mathbf{p}_T^H and $\Delta \phi_{jj}$ at high- \mathbf{p}_T^H value

Fiducial region

 \rightarrow With the full Run 2 data, we can study the first differential distributions targeting VBF with H $\rightarrow \tau \tau$

- → Use of VBF Selection cuts + MVA Tagger (BDT) to select VBF Higgs
- \rightarrow To increase VBF purity over the ggF contamination \Rightarrow tight VBF cuts
- → Two regions are defined:
 - * vbf_1: A region with more Signal (high BDT-score)
 - ★ vbf_0: A region with more ggF (low BDT-score)

Channel	[⊤] had [⊤] had
Object counting	nb of e/ μ = 0, nb of $ au_{truth}$ = 2
p _T cut	τ _{truth} : p _T > 40, 30 GeV
Angular	ΔR < 2.5, $ \eta $ < 1.5
Coll. app. x ₁ /x ₂	0.1 < x ₁ < 1.4, 0.1 < x ₂ < 1.4
Jet requirements	$\begin{array}{c} \text{leading jet } p_T > 40 \text{ GeV} \\ \text{sub-leading jet } p_T > 30 \text{ GeV} \\ E_T^{miss} > 20 \text{ GeV} \\ \text{Opposite charge of } \tau \text{-decay products} \\ \hline \mathbf{m}_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 34, p_T^{jj} > 30 \text{ GeV} \\ \eta(i_0) \times \eta(i_1) < 0 \\ \text{lepton centrality} \\ \hline \mathbf{p}_T^{oto} < 50 \text{ GeV} \end{array}$

Mass Reconstruction

→ Goal: to fit the invariant mass of the ditau system m_{jj} in each bin of the unfolded distributions to separate signal from the dominant Z→ $\tau\tau$ background contribution

 \rightarrow First step: reconstructing m_{ii} with the help of two tools:

The Missing Mass Calculator (MMC)

- * Advanced likelihood-based technique
- Relies on the variance of energy and position of neutrinos due to the limited resolution, and aims at estimating their energy and direction

The Collinear Mass Approximation (CLMA)

- ✤ Only for events where MMC fails
- * Assuming that (a) the invisible decay products of the τ-lepton decays fly in the same direction as the visible decay products and (b) the E_T^{miss} can only correspond to neutrinos

Main background: Z $\rightarrow \tau \tau$

${\rm Z}{\rightarrow}\,\tau\tau$ and the embedding process

${\rm Z}{\rightarrow}\,\tau\tau$ and the embedding process

→ The Z→ ll is estimated by the embedding process → The full Z+jets normalization comes from the embedding but MC is used to model the m_{jj}^{MMC} distribution etc.

→ It gives us the estimation of the Z→ll background in the Signal regions, but also gives us a norm who will be used as a Z→ll control region

8

Fit setup and current results

We want to measure the fiducial cross section

→ The fiducial volume was obtained by applying cuts to particle-level events to reproduce the phase space of the measurement

The differential cross-section measurement is obtained by:

→ Unfolding method is used to invert the migration matrix and extract the particle-level spectrum of a variable from the reconstructed

→ Use likelihood-based unfolding that is used ⇒ The unfolding problem becomes an 'simple' matrix inversion problem

Unfolding binning

ightarrow Limited statistics ightarrow only 4 bins for each one of the unfolding variables

→ Large off-diagonal elements lead to instabilities/large uncertanties \rightarrow Choose binning in a way that the migration matrix is diagonal and easy to invert

height	$\Delta \phi_{jj}^{ ext{signed}}$			$oldsymbol{\Delta} \phi_{jj}^{ extsf{signed}}$ vs $p_{ extsf{T}}^{ extsf{H}}$
Bin 1	[- <i>π</i> , - <i>π</i> /2]	[0, 110] GeV	[40, 95] GeV	$[p_T^H < 200 \& \Delta \phi_{jj} < 0]$
Bin 2	[- <i>π</i> /2, 0]	[110, 150] GeV	[95, 130] GeV	$[p_T^H < 200 \& \Delta \phi_{jj} > 0]$
Bin 3	[0, <i>π</i> /2]	[150, 200] GeV	[130, 180] GeV	$[p_T^H > 200 \& \Delta \phi_{jj} < 0]$
Bin 4	$[\pi/2, \pi]$	[200, 550] GeV	[180, 500] GeV	$[p_T^H > 200 \& \Delta \phi_{jj} > 0]$

10

Asimov Fit Setup

→ Fit the $m_{\tau\tau}^{MMC}$ in each one of the unfolded bins, with $m_{\tau\tau}^{MMC}$ ranges [0,200] GeV

* 2 signal regions are defined; vbf_0: low-BDT score region and vbf_1: high-BDT score region * $Z \rightarrow \tau \tau + jets$ control regions; vbf_0: low-BDT score region and vbf_1: high-BDT score region

→ Results are dominated Data stat. followed by MC stat. (Background Templates) which includes statistical uncertainty of Fake estimate and Z→ $\tau\tau$

→ Fake Background use more inclusive template to minimize the uncertainty

→ For Z→ $\tau\tau$ background, a morphing method is under study (see Roxani's talk)

	$\Delta \mu_{bin_1}$	$\Delta \mu_{bin_2}$	$\Delta \mu_{bin_3}$	$\Delta \mu_{bin_4}$
	$[-\pi, -\pi/2]$	[-π/2, 0]	[0, <i>π</i> /2]	$[\pi/2, \pi]$
syst+stat	± 0.52	± 0.36	± 0.34	± 0.52
stat	± 0.44	± 0.28	± 0.29	± 0.42
data stat	± 0.38	± 0.26	± 0.27	± 0.38

Conclusion

- → An overview of the first differential cross-section H $\rightarrow \tau \tau$ measurement in the VBF phase space
- → Four different distributions have been unfolded in this analysis: $\Delta \phi_{jj}^{signed}$, p_T^H , $p_T^{j_0}$, $\Delta \phi_{jj}^{signed}$ vs p_T^H
- → We have the full results for the Asimov unfolding for the $\tau_{lep}\tau_{lep}$, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ channels as well as a combined fit result

What is next for this analysis?

→ Unblinding has been approved last week!

Final results coming soon!!!

Thank you for listening!

Inverting the matrix

Reconstucted signal: Detector Level Distribution

Truth signal: True distribution

Response matrix: Reconstructed observable correlated to truth observable

Event selection

- · Follow the previous coupling analysis closely:
 - Use the same VBF Tagger as previous analysis
 - Only two region are defined: the low and high-BDT score, named as vbf_0 and vbf_1, respectively (same threshold as previous analysis). Only use the VBF tagger to define categories on reco level
 - To increase VBF purity over the ggH contamination \Rightarrow tightened VBF cuts over inclusive STXS region definition
 - The additional cuts on VBF properties are chosen to keep vbf_1 region the same and vbf_0 is reduced

Kinematic variable	Old cuts	New cuts	_
Pseudorapidity	$\eta^{j_0} imes \eta$	$\eta^{j_1} < 0$	• On truth level, we used the
Pseudorapidity	$ \Delta \eta_{jj} > 3.0$	$ \Delta \eta_{jj} > 3.4$	Same VBF Selection cuts as
Dijet-centrality	C = 1		on reco level
Invariant mass	m _{jj} > 350 GeV	m _{jj} > 600 GeV	\cdot On truth level, the ggH
Transverse momentum	$p_T^{j_1} > 3$	0 GeV	contamination is reduced
Transverse momentum	-	p ^{jj} > 30 GeV	$28.7\% \rightarrow 16.6\%$
Transverse momentum	-	p_T^{tot} < 50 GeV	

Fiducial region

 \cdot With the full Run 2 data, we can study the first differential distributions targeting VBF with H $\rightarrow \tau \tau$

 \cdot The fiducial region is defined to be as close as possible to the detector level VBF selection, and with a high VBF purity

• The 3 decay channels have different kinematic cuts on Higgs decay products, while jet requirements are unified

Channel	$ au_e au_\mu$	aulep $ au$ had	auhad $ au$ had		
Object counting	nb of e = 1, nb of μ = 1, nb of $ au_{truth}$ = 0	nb of e/ μ = 1, nb of $ au_{truth}$ = 1	nb of e/ μ = 0, nb of $ au_{truth}$ = 2		
p_T cut	e/μ : p_T cut 10 to 27.3 GeV	e/µ : pT cut 27.0 to 27.3 GeV $ au_{truth}$: pT > 30 GeV	<i>τ_{truth}:</i> p _T > 40, 30 GeV		
Kinematics	$m_{ au au}^{Coll}$ > $m_{ extsf{Z}-}$ 25GeV 30 < $m_{ extsf{e}}$ < 100 GeV	m $_{ au}$ < 70 GeV			
Angular	$\Delta R_{e\mu}$ < 2.0, $ \eta_{e\mu} $ < 1.5	$\Delta R_l < 2.5, \eta_l < 1.5$	$\Delta \mathrm{R}$ < 2.5, $ \eta $ < 1.5		
Coll. app. x ₁ /x ₂	$0.1 < x_1 < 1.0, 0.1 < x_2 < 1.0$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.2$	$0.1 < x_1 < 1.4, 0.1 < x_2 < 1.4$		
	leading jet $p_T > 40$ GeV, sub-leading jet $p_T > 30$ GeV $E_T^{miss} > 20$ GeV Opposite charge of τ -decay products				

m_{jj} > 600 GeV,
$$|\Delta\eta_{jj}|$$
 > 3.4, p $_T^{jj}$ > 30 GeV

 $\eta(\mathbf{j}_0) \times \eta(\mathbf{j}_1) < 0$ lepton centrality: visible decay products of the τ leptons between VBF jets

Shape plot for fakes

• We want to study the shape of the fakes distribution for each bins in the mass distribution unfolded in $\Delta \phi_{jj}$ to see if we can use a more inclusive shape template in the different bins of $\Delta \phi_{jj}$

Shape plot for fakes

 \cdot We choose to use the inclusive shape of the fakes for each bin in signed $\Delta\phi_{jj}$ and $\Delta\phi_{jj}$ vs p_T^H

· We choose to use the inclusive shape of the fakes for total distribution in p_T^H and $p_T^{J_0}$

· As the $\Delta \phi_{jj}^{signed}$ and p_T^H vs $\Delta \phi_{jj}^{signed}$ unfolded distributions have a symmetry around 0, we make the average between the background of two bins to increase our data and stats

• Those templates don't improve our results neither they make them worse but they increase the stability of our fit

	bins	$\Delta \mu_{bin_1}$	$\Delta \mu_{bin_2}$	$\Delta \mu_{bin_3}$ [0, $\pi/2$]	$\Delta \mu_{bin_4}$ $[\pi/2,\pi]$
		1,	,_,	[-,,_]	,=,
	syst+stat	± 0.42	± 0.24	± 0.24	± 0.41
Combined	stat	± 0.32	± 0.19	± 0.19	± 0.31
	data stat	± 0.28	± 0.17	± 0.17	± 0.28
	syst+stat	± 0.63	± 0.35	± 0.35	± 0.64
$ au_{lep} au_{had}$	stat	± 0.54	± 0.32	± 0.32	± 0.54
	data stat	± 0.46	± 0.25	± 0.25	± 0.46
	syst+stat	± 0.52	± 0.36	± 0.34	± 0.52
$ au_{had} au_{had}$	stat	± 0.44	± 0.28	± 0.29	± 0.42
	data stat	± 0.38	± 0.26	± 0.27	± 0.38
	syst+stat	± 1.78	± 0.89	± 0.88	± 1.77
$ au_e au_\mu$	stat	± 1.50	± 0.74	± 0.74	± 1.50
	data stat	± 1.26	± 0.65	± 0.64	± 1.26

 \Rightarrow Uncertainty on μ for each of the bins of the $\Delta \phi_{jj}$ distribution for combined fit and the $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$, and $\tau_e\tau_{\mu}$ channel fits."stat" included Data and MC statistics, while "data stat" only includes data statistics

 \Rightarrow Those results are taken from the internal notes \rightarrow Update will come soon with the $Z \rightarrow \tau \tau$ modelling uncertainties and the signal theory uncertainties added \rightarrow Results will be slightly worse

	bins [GeV]	$\Delta \mu_{bin_1}$ [0, 110]	$\Delta \mu_{\textit{bin}_2}$ [110, 150]	$\Delta \mu_{bin_3}$ [150, 200]	$\Delta \mu_{{ m bin}_4}$ [200, 550]
	syst+stat	± 0.78	± 0.50	± 0.38	± 0.23
Combined	stat	± 0.49	± 0.39	± 0.30	± 0.19
	data stat	± 0.39	± 0.31	± 0.24	± 0.16
	syst+stat	± 0.92	± 0.67	± 0.53	± 0.37
$ au_{lep} au_{had}$	stat	± 0.67	± 0.59	± 0.47	± 0.34
	data stat	± 0.62	± 0.45	± 0.37	± 0.25
	syst+stat	± 1.07	± 0.75	± 0.47	± 0.30
$ au_{had} au_{had}$	stat	± 0.83	± 0.61	± 0.39	± 0.26
	data stat	± 0.66	± 0.48	± 0.32	± 0.22
	syst+stat	± 4.08	± 1.51	± 1.75	± 1.44
$ au_e au_\mu$	stat	± 2.57	± 1.28	± 1.28	± 1.11
	data stat	± 1.99	± 0.98	± 0.98	± 0.83

 \Rightarrow Uncertainty on μ for each of the bins of the p_T^H distribution for combined fit and the $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$, and $\tau_e\tau_{\mu}$ channel fits."stat" included Data and MC statistics, while "data stat" only includes data statistics

 \Rightarrow Those results are taken from the internal notes \rightarrow Update will come soon with the $Z \rightarrow \tau \tau$ modelling uncertainties and the signal theory uncertainties added \rightarrow Results will be slightly worse

	bins [GeV]	$\Delta \mu_{bin_1}$ [40, 95]	$\Delta \mu_{bin_2}$ [95, 130]	$\Delta \mu_{bin_3}$ [130, 180]	$\Delta \mu_{bin_4}$ [180, 500]
	syst+stat	± 0.53	± 0.47	± 0.37	± 0.30
Combined	stat	± 0.39	± 0.36	± 0.32	± 0.24
	data stat	± 0.32	± 0.30	± 0.27	± 0.20
	syst+stat	± 0.67	± 0.62	± 0.59	± 0.46
$ au_{lep} au_{had}$	stat	± 0.53	± 0.60	± 0.57	± 0.44
	data stat	± 0.44	± 0.44	± 0.42	± 0.33
	syst+stat	± 1.00	± 0.63	± 0.50	± 0.41
$ au_{had} au_{had}$	stat	± 0.82	± 0.55	± 0.44	± 0.33
	data stat	± 0.65	± 0.45	± 0.37	± 0.28
	syst+stat	± 2.23	± 1.94	± 1.83	± 1.65
$ au_e au_\mu$	stat	± 1.64	± 1.61	± 1.60	± 1.33
	data stat	± 1.25	± 1.21	± 1.18	± 0.99

 \Rightarrow Uncertainty on μ for each of the bins of the $p_T^{j_0}$ distribution for combined fit and the $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$, and $\tau_e\tau_{\mu}$ channel fits."stat" included Data and MC statistics, while "data stat" only includes data statistics

 \Rightarrow Those results are taken from the internal notes \rightarrow Update will come soon with the $Z \rightarrow \tau \tau$ modelling uncertainties and the signal theory uncertainties added \rightarrow Results will be slightly worse

aned VS p_{T}^{H}

		$\Delta \mu_{bin_1}$	$\Delta \mu_{bin_2}$	$\Delta \mu_{bin_3}$	$\Delta \mu_{bin_4}$
	bins	< 0	> 0	< 0	> 0
	bins [GeV]	< 200	< 200	> 200	> 200
	syst+stat	± 0.29	± 0.28	± 0.32	± 0.32
Combined	stat	± 0.23	± 0.22	± 0.28	± 0.29
	data stat	± 0.20	± 0.20	± 0.25	\pm 0.25
	syst+stat	± 0.43	± 0.42	± 0.52	± 0.52
$ au_{lep} au_{had}$	stat	± 0.37	± 0.34	± 0.49	± 0.49
$ au_{lep} au_{had}$	data stat	± 0.32	± 0.31	± 0.37	± 0.38
	syst+stat	± 0.41	± 0.39	± 0.47	± 0.49
$ au_{had} au_{had}$	stat	± 0.34	± 0.33	± 0.40	± 0.41
	data stat	± 0.31	± 0.30	± 0.35	± 0.36
	syst+stat	± 1.12	± 1.10	± 1.63	± 1.66
$ au_e au_\mu$	stat	± 0.85	± 0.83	± 1.42	± 1.44
	data stat	± 0.73	± 0.72	± 1.19	± 1.21

 \Rightarrow Uncertainty on μ for each of the bins of the $\Delta \phi_{jj}$ vs p_T^H distribution for combined fit and the $\tau_{lep}\tau_{had}$, $\tau_{had}\tau_{had}$, and $\tau_e\tau_{\mu}$ channel fits."stat" included Data and MC statistics, while "data stat" only includes data statistics

 \Rightarrow Those results are taken from the internal notes \rightarrow Update will come soon with the $Z \rightarrow \tau \tau$ modelling uncertainties and the signal theory uncertainties added \rightarrow Results will be slightly worse

Background Template

 \cdot The Z $\to \tau\tau$ process, as in the previous analysis, has been estimated through the <code>object-level embedding procedure</code>

 \cdot The full Z+jets normalization comes from the embedding but MC is used to model the m_{MMC} distribution and the distributions under study

Grouped impact of systematics for $\Delta \phi_{jj}$

POI	μ_{Bin1}	μ_{Bin2}	μ_{Bin3}	μ_{BIn4}
DIIIS	[-n, -n/2]	[- //2,0]	$[0, \pi/2]$	[n/2, n]
best-fit	1.000	1.000	1.000	1.000
Full Unc	±0.365	±0.210	±0.210	±0.359
stat only	±0.284	±0.171	±0.172	±0.281
full syst	±0.233	±0.125	±0.124	±0.227
MC stat	±0.153	±0.077	±0.077	±0.149
Sig theory				
Jet + Met	±0.120	±0.074	± 0.068	± 0.114
Tau	± 0.058	±0.035	±0.036	± 0.061
Fake	± 0.104	± 0.041	± 0.044	±0.227
Lumi	±0.002	± 0.001	± 0.001	± 0.002
Top theory	± 0.018	±0.022	± 0.019	± 0.017
Z theory	±0.026	±0.009	± 0.008	± 0.026
B-jet	± 0.004	±0.003	± 0.004	± 0.004
Lepton	±0.023	±0.019	±0.019	±0.022
NormFactors	± 0.061	±0.047	± 0.044	± 0.058

Grouped impact of different systematic sources for each of the bins of the $\Delta \phi_{jj}$ distribution for the combined Asimov fit. "stat only" includes only data statistics.

Results for $\mathbf{p}_{T}^{\mathbf{j}_{0}}$ in the Hightarrow au au differential analysis

	bins [GeV]	$\Delta \mu_{\text{Bin1}}$ [40,95]	$\Delta \mu_{\text{Bin2}}$ [95, 130]	Δμ _{Bin3} [130, 180]	Δμ _{Bin4} [180, 500]
combined	syst+stat	±0.515	±0.387	±0.352	±0.263
	stat	±0.394	±0.356	±0.322	±0.240
	data stat	±0.322	±0.297	±0.269	±0.202
$ au_{lep} au_{had}$	syst+stat stat data stat	±0.604 ±0.527 ±0.444	$\pm 0.616 \\ \pm 0.597 \\ \pm 0.441$	±0.587 ±0.571 ±0.418	$\pm 0.458 \\ \pm 0.441 \\ \pm 0.328$
$ au_{had} au_{had}$	syst+stat	±0.969	±0.591	±0.475	±0.354
	stat	±0.816	±0.546	±0.444	±0.328
	data stat	±0.648	±0.454	±0.374	±0.276
τετμ	syst+stat	±2.232	±1.830	±1.726	±1.447
	stat	±1.641	±1.611	±1.595	±1.333
	data stat	±1.245	±1.212	±1.182	±0.991

Grouped impact of systematics for $p_T^{j_0}$

POI bins [GeV]	μ _{BIn1} [40, 95]	μ _{Bin2} [95, 130]	μ _{Bin3} [130, 180]	μ _{BIn4} [180, 500]
best-fit	1.000	1.000	1.000	1.000
Full Unc	± 0.515	±0.387	± 0.352	±0.263
stat only	±0.323	±0.297	±0.269	±0.202
full syst	± 0.404	±0.248	±0.229	± 0.171
MC stat	±0.262	±0.199	±0.186	±0.133
Sig theory				
Jet + Met	±0.201	± 0.100	± 0.114	±0.068
Tau	± 0.046	± 0.065	± 0.047	± 0.051
Fake	± 0.191	± 0.068	± 0.054	±0.020
Lumi	± 0.001	± 0.001	± 0.001	± 0.001
Top theory	± 0.073	± 0.049	± 0.035	± 0.051
Z theory	± 0.030	± 0.017	± 0.016	± 0.009
B-jet	± 0.003	± 0.004	± 0.006	±0.003
Lepton	±0.059	±0.023	±0.022	± 0.018
NormFactors	±0.136	± 0.041	±0.037	±0.029

Grouped impact of different systematic sources for each of the bins of the $p_T^{j_0}$ distribution for the combined Asimov fit. "stat only" includes only data statistics.

Results for \mathbf{p}_{T}^{H} in the $\mathbf{H} \rightarrow \tau \tau$ differential analysis

bins [GeV]		$\Delta \mu_{ ext{Bin1}}$	Δμ _{Bin2}	Δμ _{Bin3}	Δμ _{Bin4}
		[0, 110]	[110, 150]	[150, 200]	[200, 550]
combined	syst+stat	±0.676	±0.445	±0.345	±0.202
	stat	±0.488	±0.386	±0.301	±0.185
	data stat	±0.385	±0.305	±0.241	±0.159
TlepThad	syst+stat	±0.818	±0.622	±0.507	±0.352
	stat	±0.672	±0.591	±0.466	±0.340
	data stat	±0.623	±0.451	±0.374	±0.249
$ au_{had} au_{had}$	syst+stat stat data stat	$\pm 1.015 \\ \pm 0.828 \\ \pm 0.656$	±0.707 ±0.613 ±0.483	±0.445 ±0.390 ±0.319	±0.285 ±0.257 ±0.220
$\tau_{\ell}\tau_{\mu}$	syst+stat	±3.906	±1.514	±1.616	±1.347
	stat	±2.570	±1.277	±1.282	±1.110
	data stat	±1.990	±0.980	±0.984	±.827

Grouped impact of systematics for \mathbf{p}_{T}^{H}

POI bins [GeV]	μ _{Bin1} [0, 110]	μ _{Bin2} [110, 150]	μ _{Bin3} [150, 200]	μ _{BIn4} [200, 550]
best-fit	1.000	1.000	1.000	1.000
Full Unc	± 0.676	± 0.445	± 0.345	±0.202
stat only	±0.385	±0.305	±0.241	±0.159
full syst	±0.559	±0.327	±0.250	±0.126
MC stat	±0.346	±0.253	±0.191	±0.096
Sig theory				
Jet + Met	± 0.197	±0.166	±0.131	± 0.061
Tau	± 0.122	± 0.054	±0.082	± 0.042
Fake	±0.363	± 0.116	± 0.067	±0.017
Lumi	± 0.002	± 0.001	± 0.001	± 0.001
Top theory	± 0.054	±0.028	±0.027	± 0.014
Z theory	±0.089	±0.024	±0.022	±0.012
B-jet	± 0.004	±0.008	± 0.004	±0.002
Lepton	± 0.044	±0.030	± 0.018	±0.008
NormFactors	± 0.166	± 0.104	± 0.058	±0.033

Grouped impact of different systematic sources for each of the bins of the p_T^H distribution for the combined Asimov fit. "stat only" includes only data statistics.

Results for $\Delta \phi_{jj}$ vs \mathbf{p}_{T}^{H} in the $\mathbf{H} \rightarrow \tau \tau$ differential analysis

bins bins [GeV]		Δµ _{Bin1} < 0 < 200	$\Delta \mu_{ ext{Bin2}} > 0 < 200$	$\Delta \mu_{ ext{Bin3}} < 0 \ > 200$	$\Delta \mu_{ ext{Bin4}}$ > 0 > 200
combined	syst+stat	±0.276	±0.270	±0.306	±0.309
	stat	±0.225	±0.221	±0.284	±0.287
	data stat	±0.202	±0.199	±0.252	±0.254
Tlep⊤had	syst+stat	±0.408	±0.399	±0.495	±0.496
	stat	±0.368	±0.337	±0.486	±0.488
	data stat	±0.318	±0.309	±0.374	±0.375
⊤had⊤had	syst+stat	±0.394	±0.377	±0.436	±0.441
	stat	±0.342	±0.331	±0.400	±0.405
	data stat	±0.307	±0.299	±0.354	±0.358
$\tau_e \tau_\mu$	syst+stat	±1.079	±1.059	±1.545	±1.569
	stat	±0.849	±0.833	±1.417	±1.440
	data stat	±0.734	±0.721	±1.187	±1.207

Grouped impact of systematics for $\Delta \phi_{jj}$ vs \mathbf{p}_T^H

POI	μ _{Bin1}	μ_{BIn2}	μ _{BIn3}	μ_{BIN4}
bins	< 0	> 0	< 0	> 0
bins [GeV]	< 200	< 200	> 200	> 200
best-fit	1.000	1.000	1.000	1.000
Full Unc	±0.276	±0.270	±0.306	±0.309
stat only	±0.202	±0.199	±0.252	±0.254
full syst	±0.191	±0.186	±0.178	±0.181
MC stat Sig theory	±0.112	±0.108	±0.136	±0.137
Jet + Met	± 0.090	± 0.088	± 0.092	±0.093
Fake	±0.086	±0.085	±0.030	±0.039
Lumi	± 0.001	± 0.001	± 0.001	± 0.001
Top theory	± 0.026	± 0.024	± 0.016	± 0.017
Z theory	± 0.007	± 0.007	$\pm 0.020 \\ \pm 0.003$	±0.020
B-jet	± 0.003	± 0.003		±0.003
Lepton NormFactors	$\pm 0.012 \\ \pm 0.068$	$\pm 0.013 \\ \pm 0.068$	±0.022 ±0.054	±0.021 ±0.053

Grouped impact of different systematic sources for each of the bins of the $\Delta \phi_{jj}$ vs p_T^H distribution for the combined Asimov fit. "stat only" includes only data statistics.