A search for high-mass resonances decaying to tv in pp-collisions at centerof-mass energy of 13 TeV with the Run-2 data of the ATLAS detector

Christos Vergis (he/his)

IOP HEPP APP NPP 2024

Science and Technology Facilities Council

• Standard Model incomplete

- Standard Model incomplete
- Physics Beyond the SM : New heavy gauge bosons (W'/Z')

- Standard Model incomplete
- Physics Beyond the SM : New heavy gauge bosons (W'/Z')
- Enhanced coupling to 3rd generation

 Discrepancy in R(D*)-R(D)

- Standard Model incomplete
- Physics Beyond the SM : New heavy gauge bosons (W'/Z')
- Enhanced coupling to 3rd generation $\frac{1}{b}$ i) Discrepancy in R(D*)-R(D) ii) Hierarchy of masses (m_t \gg m_q)

Tau leptons

- Tau leptons: 3rd generation
- Decay hadronically (65%)

Tau leptons

- Tau leptons: 3rd generation
- Decay hadronically (65%)
- Challenge : Identification from jets
- Used dedicated RNN algorithms

Signal Production

Flat signal sample reweighted to M and F

Event Selection / Strategy

- Event Cleaning
- Tagging $E_{\mathrm{T}}^{\mathrm{miss}}$ (Trigger)
- Require back-to-back and balanced momenta
- No additional leptons

Event Selection / Strategy

- Event Cleaning
- Tagging $E_{\mathrm{T}}^{\mathrm{miss}}$ (Trigger)
- Require back-to-back and balanced momenta
- No additional leptons
- Mainly interested in Transverse Mass

$$m_{\rm T} = \sqrt{2 \cdot p_{\rm T}^{\tau_{\rm had-vis}} \cdot E_{\rm T}^{\rm miss} \cdot \cos\Delta\phi}$$

Jet Background Estimation

$\mathbf{>}$	fail Loose ID	Loose ID	
$E_{\rm T}^{\rm miss} > 150~{ m Ge}^{-1}$	CR1	SR	
$g_{\rm T}^{ m miss}$ < 100 GeV	CR3	CR2	

Jet Background Estimation

Jet Background Estimation

Jet Background Smoothening

- Applying transfer factors
- At high- m_T (>500 GeV) use functional fit
- Extrapolation from smoothening : not affect final results

Background validation

Rest backgrounds from simulation

Data driven background validation: Good SM background agreement at high-m_T

Signal Region

Good agreement between data/background in SR

Profile Likelihood Fit

- No significant deviation to SM observed
- Performed PL Fit in transverse mass
- Derive upper limits on signal strength μ

Model Exclusions

• SSM excluded below 5 TeV (@ 95% CL)

Model Exclusions

- SSM excluded below 5 TeV (@ 95% CL)
- Non-Universal gauge interaction models excluded below 5 TeV to 3.5 TeV (@ 95% CL)

Model-independent limits

 Model independent limits derived on visible cross-section above m_T threshold (signal shape independence)

Model-independent limits

- Model independent limits derived on visible cross-section above m_T threshold (signal shape independence)
- Acceptances to be determined by theorist
- Provide reconstruction efficiency as function of $m_{\rm T}$

- Presented ATLAS Run-2 search for W' in τν channel
- Result recently published: arxiv 2402.16576 (arxiv.org) (Subm: Physical Review D)
- Highest exclusion limits to-date

3-prong $\tau_{\text{had-vis}}$ $p_T = 1.4 \text{ TeV}$

Thank you

Run Number: 350184, Event Number: 1106430887

Date: 2018-05-14 08:58:04 CEST

Backup

Acceptancies

Trigger Efficiency

Tau detector interactions Corrections (1-prong)

Tau detector interactions Corrections (3-prong)

Selection

_	Selection	Data	W ightarrow au u	Jet background	Other background	$W'_{\rm SSM}~(5{\rm TeV})$
	Preselection	3640749	102000 ± 6000	—	73000 ± 6000	18 ± 5
	τ -lepton identification	1189863	84000 ± 5000	_	52000 ± 4000	17 ± 4
	$E_{\rm T}^{\rm miss} > 150 { m ~GeV}$	58528	13400 ± 1600	31000 ± 9000	12000 ± 1500	15 ± 4
	$0.7 < \frac{p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}}}{E_{\mathrm{T}}^{\mathrm{miss}}} < 1.3$	18528	9700 ± 1400	5800 ± 400	2900 ± 500	14 ± 4
	$m_{\rm T} > 1 { m TeV}$	58	51 ± 12	10 ± 4	12.0 ± 2.7	$7.2 \stackrel{29}{-} 3.3$

TopFlavor Limits

True $\tau_{\text{had-vis}}$ efficiency

	Signal efficiency		Background rejection BDT		Background rejection RNN	
Working point	1-prong	3-prong	1-prong	3-prong	1-prong	3-prong
Tight	60%	45%	40	400	70	700
Medium	75%	60%	20	150	35	240
Loose	85%	75%	12	61	21	90
Very loose	95%	95%	5.3	11.2	9.9	$16^{\scriptscriptstyle 31}$

			Preselection		
$E_{\rm T}^{\rm miss}$ trigger			$70,90,110~{\rm GeV}$		
Event cleaning			applied		
$\tau_{\rm had-vis}$ tracks			1 or 3		
$\tau_{\rm had-vis}$ charge			± 1		
$p_{\mathrm{T}}^{ au_{\mathrm{had-vis}}}$			$> 30 {\rm ~GeV}$		
$ au_{ m had-vis} \; p_{ m T}^{ m leadTrack}$			$> 10 { m ~GeV}$		
Lepton veto			applied		
$\Delta\phi_{\tau_{\rm had-vis},E_{\rm T}^{\rm miss}}$			> 2.4 rad		
			Region requirements		
	\mathbf{SR}	CR1	$\mathbf{CR2}$	CR3	\mathbf{VR}
τ -lepton identification	\mathbf{L}	VL L	L	$VL \ L$	L
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150~{\rm GeV}$	$> 150~{\rm GeV}$	$< 100 { m ~GeV}$	$<100~{\rm GeV}$	$> 150~{\rm GeV}$
$p_{\mathrm{T}}^{ au_{\mathrm{had-vis}}}/E_{\mathrm{T}}^{\mathrm{miss}}$	$\in [0.7, 1.3]$	$\in [0.7, 1.3]$			< 0.7
$m_{ m T}$	0.000	1	=:	777.0	$> 240~{\rm GeV}$

Event Selection

Systematics

- Systematic uncertainties included as Nuisance Parameters in Profile likelihood fit
- Major background systematics from Tau Energy Scale, theory and tau reconstruction/ID efficiency
- Jet Estimate for jet background systematics
 Others trigger, ETmiss, Jet

Light Lepton Searches

Phys. Rev. D 100 (2019) 052013

Background validation

Validate background in dedicated Region

Signal Region

Good agreement between data/background in SR

Model-independent limits

- Model independent limits derived on visible cross-section above m_T threshold (signal shape independence)
- Acceptances to be determined by theorist
- Provide Reconstruction efficiency to correct for reconstruction effects

