

IOP HEPP Conference

Searching for Dark Matter in the Light of dark-Higgs Strahlung

Tim Brückler Supervision: James Frost

Introduction

Dark-Matter:

-> Indirect evidence through gravitational effects

- -> Standard Model: lack of valid candidate
 - -> BSM theories: postulating additional particles: e.g. WIMPs

Searches for Dark-Matter:

- -> DM escapes detector
 - -> If visible radiation: Missing momentum
 - -> Search for $X + E_T^{miss}$
 - -> X = jets, photons, vector bosons

This talk: X = dark-Higgs s \rightarrow hh \rightarrow 4b

Evidence for dark matter: the Bullet Cluster.

Dark-Higgs Model - Introduction

Simplified Models:

- -> Introduce single Z' between SM and DM
 - -> Strong experimental constraints
 - -> Small coupling to SM
 - -> DM overproduction

Dark-Higgs Model:

- -> Introduce U(1)' gauge group
 - -> DM mass generated by Higgs mechanism in dark sector
 - -> Two additional massive mediators: dark-Higgs and Z'
 - -> Weaker experimental constraints
 - -> Easier satisfaction of relic density constraints

Dark-Higgs Model

Interactions with Standard Model:

- -> Z' couples to quarks
- -> Dark-Higgs mixes with SM Higgs:
 - -> Decay to SM Higgs, vector bosons or b-quarks

Interaction in dark sector:

- -> Dark-Higgs strahlung: $Z'^* \rightarrow Z' + s$
- -> High chance of high E_T^{miss} at high $M_{Z'}$
 - -> Only slowly declining cross-sections
 - -> Expect sensitivity to high Z' masses

Dark-Higgs strahlung process.

Dark-Higgs strahlung cross-section.*

Dark-Higgs Model in ATLAS

Previous Searches:

- -> Existing analyses for multiple channels:
 - -> s \rightarrow bb: <u>ATLAS-CONF-2024-004</u>
 - -> s \rightarrow WW/ZZ, DOI: <u>10.1103/PhysRevLett.126.121802</u>
 - -> $s \rightarrow WW$, DOI: <u>10.1007/JHEP07(2023)116</u>

Target for this analysis:

- -> Dark-Higgs \rightarrow hh
- -> First search for resonant di-Higgs + E_T^{miss}
- -> Four-b final state offers highest branching ratio

Dark-Higgs decay branching fractions.

Analysis Strategy

Kinematic Selection:

- -> Reduce main backgrounds: semi-leptonic ttbar decays
- -> Remove challenging multi-jet QCD background
- -> Remaining main background: Z+jets, ttbar, single-top

Machine Learning:

- -> Use full power of kinematic differences between signal and background
- -> Generalisability: Only one network trained for all signal points
- -> Physical Interpretability: Decouple output-score from M_{hh}

Fit di-Higgs mass distribution:

- -> Background estimation in dedicated control regions
 - -> Correct normalisation of SM processes in enriched regions
- -> Compute exclusion limits

Kinematic Selection

E_T^{miss} Triggers:

-> Retain full efficiency: $E_T^{miss} \ge 200 \text{ GeV}$

Kinematic preselection:

- -> $N_{jets} \ge 4$ (≥ 3 b-tagged)
- -> Select on S(E_T^{miss}) and $\Delta \phi$ of E_T^{miss} and b-jets
 - -> Remove QCD multi-jet background
- -> Select on m_T (transverse mass) of b-jets
 - -> Reduction of ttbar background

Dominant Remaining backgrounds:

- -> ttbar, Z+jets and single-top
- -> Multi-jet background negligible
 - -> Fully MC based background estimation

Example of highly discriminating variable: E_T^{miss} significance. Mis-modelling at low values due to QCD background.

Higgs Reconstruction

1) Selecting jets:

- -> Select four leading b-jets
 - -> If N_{jets} == 3:
 - -> If heavy jet: assumed to be merged
 - -> Otherwise add untagged jet

2) Higgs Candidates:

- -> In case of heavy jet:
 - -> Second candidate formed from other jets
- -> Else:

-> Pair jets by minimising max($\Delta R_{Higgs-1}$, $\Delta R_{Higgs-2}$)

3) Dark-Higgs:

- ΔR = Lorentz inv. angular separation of decay products
- -> Reconstructed from two Higgs candidates

Di-Higgs mass distribution after pre-selection.

Machine Learning

Further background reduction using neural net

Little mass dependence on signal-point

-> Single neural net training using all events

Di-Higgs distribution:

- \rightarrow M_{hh} distributions of signal and bkg differ significantly
- -> Observe strong sculpting when applying cut
 - -> Lose benefit of fitting physical variable
- -> Solution: Add correlation term to loss-function:

Total Loss =
$$\alpha * L_{BCE}(y, \hat{y}) + (1 - \alpha) * r_{X_{m_{HH}}, \hat{Y}}$$

Binary cross-
entropy for
discrimination

Di-Higgs mass distribution without decorrelation.

Di-Higgs mass distribution with decorrelation.

Signal Region

Multiple bins in di-Higgs mass

- -> Events with high neural net score
- -> Good resolution of dark-Higgs mass-peak
- -> Single SR definition for all mass-points
- -> Physical interpretability of results

Prefit di-Higgs mass distribution in signal region with two representative signal points shown.

Background Estimation

Analysis region definitions:

- -> Based on neural network score
- -> Control regions (CR)
 - -> Correct normalisation
- -> Validation region (VR)
 - -> Validate background estimation
- -> Adjacent to signal region (SR)

Neural network score after pre-selection.

Control Regions

- -> Dedicated CR for Z+jets:
- -> Replace neutrinos by OS leptons
 -> Two opposite-sign leptons + low E_T^{miss}
 -> Three CRs for top related processes

Di-Higgs mass distribution in Z+jets CR.

Background-Only Fit

Simultaneous fit in all CRs:

- -> Signal contamination neglected
- -> Normalisation parameters
 - -> Correct for main backgrounds
- -> Good post-fit agreement observed

Post-fit Results

Exclusion Fit

Preliminary expected exclusion limits:

- -> Important systematics included
- -> Competitive sensitivity up to
 - -> 2200 GeV in $M_{Z'}$
 - -> 410 GeV in M_s
- -> Further optimisations still to be added
 - -> e.g. SR binning

Summary

A first search for a resonant di-Higgs + E_T^{miss} signature was presented

- -> Unique kinematics allow to reduce SM backgrounds
- -> Machine learning is used to avoid sculpting of di-Higgs mass
- -> Background estimation in dedicated control regions
- -> Interpretation in terms of the dark-Higgs model

-> Stay tuned for unblinded results!

Backup

Main signal processes

QCD background: $\Delta \phi_{min}$ (b-jets, E_T^{miss})

Pre-selection with QCD cuts

Selections

Variable	Cut Value	
Pre-Selection		
n _{jets}	(4,7)	
n_{b-jets}	≥ 3	
$\Delta \phi_{\min}^{4j}$	> 0.4	
n _{leptons}	== 0	
Optimised selection		
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	
$m_{\mathrm{T},min}^{b}$ [GeV]	> 80	
$S(E_{\rm T}^{\rm miss})$	> 7	

Variable	Cut Value
Z + jets CR	
Preselection	Pass (except n_{leptons} veto)
n_{μ}	2
$E_{\rm T}^{\rm miss}$ [GeV]	< 75
$E_{\rm T}^{{\rm miss}-\mu}$ [GeV]	> 200
$E_{\mathrm{T}}^{\mathrm{miss}-\mu}/\sqrt{H_{\mathrm{T}}}$	> 7
$m_{T,ZCR}^{b,min}$ [GeV]	> 80
$ m_{\mu\mu} - m_Z $ [GeV]	< 15

Selections

Variable		Cut Value	
	$3b \text{ low-}m^b_{T,min} \text{ CR}$	$3b$ high- $m^b_{T,min}$ CR	4 <i>b</i> CR
Preselection	Pass		
$S(E_{\rm T}^{\rm miss})$		(7, 18)	
$m_{\rm T}^{4b}$ [GeV]	(350, 800)		
$\Delta R_{\min}(b, b) / E_{\mathrm{T}}^{\mathrm{miss}} [\mathrm{GeV}^{-1}]$	> 0.001		
NN output-score	(0.35, 0.85)		
n_{b-jets}	== 3	== 3	== 4
$m^b_{\mathrm{T},min}$ [GeV]	(100, 200)	(200, 350)	(80, 280)

Selections

Variable	Cut Value	
Validation Region Selection		
Preselection	Pass	
n_{b-jets}	≥ 3	
$m_{\mathrm{T},min}^{b}$ [GeV]	(125, 350)	
$S(E_{\rm T}^{ m miss})$	(7,18)	
$m_{\rm T}^{4b}$ [GeV]	(350, 800)	
$\Delta R_{\min}(b, b) / E_{\mathrm{T}}^{\mathrm{miss}} [\mathrm{GeV}^{-1}]$	(0.001, 0.012)	
NN output-score	(0.85, 0.95)	

Variable Cut Val		
Signal Region Selection		
Preselection	Pass	
$m_{\mathrm{T},min}^{b}$ [GeV]	> 125	
$S(E_{\rm T}^{\rm miss})$	> 7	
$m_{\rm T}^{4b}$ [GeV]	> 300	
$\Delta R_{\min}(b, b) / E_{\mathrm{T}}^{\mathrm{miss}} [\mathrm{GeV}^{-1}]$	< 0.01	
NN output-score	> 0.95	

Neural Net Training Variables

- Additional "constructed" features enhance the discrimination power due to limited size of training set

Pre-fit Control Regions

tim.lukas.bruckler@cern.ch

Signal region composition

Process	Number of Selected Events
signal ($M_{Z'} = 1700, M_s = 260 \text{ GeV}$)	25.5
data yield	blinded
total background yield	55.4
$t\bar{t} + light$	6.0
$t\bar{t} + \geq 1$ b-jet	8.2
$t\bar{t} + \ge 1 \text{ c-jet}$	3.9
Z + jets	15.8
W+ jets	7.6
single-top	7.6
top+EW	4.3
di-boson	1.9
tri-boson	0.2
VH	0.0

Background-Only Fit

Run likelihood fit simultaneously in all CRs

- -> Signal contamination neglected
- -> Normalisation parameters to correct for main backgrounds
- -> Good post-fit agreement observed

