

Searching for Supersymmetry with the ATLAS Detector

Institute of Physics, Joint APP, HEPP, NP conference 2024 8-11 April 2024 Alessandro Ruggiero Supervisor: Alan Barr

- Why are we still looking for SUSY?
- Still interesting places left to look!

Direct slepton decay

- Neutralino is a Dark Matter candidate
- Light smuons can provide extra loop corrections to explain the g-2 anomaly

- Why are we still looking for SUSY?
- Still interesting places left to look!

- Why are we still looking for SUSY?
- Still interesting places left to look!

A short history of ATLAS slepton searches at low slepton mass and small $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

arXiv:1403.5294

4

- Why are we still looking for SUSY?
- Still interesting places left to look!

A short history of ATLAS slepton searches at low slepton mass and small $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

- Neutralino is a Dark Matter candidate
- Light smuons can provide extra loop corrections to explain the g-2 anomaly

arXiv:1911.12606 Institute of Physics, Joint APP, HEPP, NP conference 2024

Soft 2 lepton search targeting

very small ∆m

- Why are we still looking for SUSY?
- Still interesting places left to look!

A short history of ATLAS slepton searches at low slepton mass and small $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

states with 2 leptons + 0,1,2 jets

arXiv:1908.08215

 Light smuons can provide extra loop corrections to explain the g-2 anomaly

- Why are we still looking for SUSY?
- Still interesting places left to look!

A short history of ATLAS slepton searches at low slepton mass and small $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

states with 2 leptons + 0 jets

arXiv:2209.13935

 Light smuons can provide extra loop corrections to explain the g-2 anomaly

- Why are we still looking for SUSY?
- Still interesting places left to look!

A short history of ATLAS slepton searches at low slepton mass and small $\Delta m(\tilde{\ell}, \tilde{\chi}_1^0)$

- Neutralino is a Dark Matter candidate
- Light smuons can provide extra loop corrections to explain the g-2 anomaly

We are targeting this region! $m(\tilde{\ell}_{L,R})$ [GeV Also not yet constrained by other experiments

Analysis Overview

Why is this region largely unexcluded?

- Low Pt leptons large Fake/Non-Prompt lepton background
- Large $WW \rightarrow lvlv$ backgrounds
- Relatively low Missing transverse momentum (MET)

Analysis Overview

Why is this region largely unexcluded?

- Low Pt leptons large Fake/Non-Prompt lepton background
- Large $WW \rightarrow lvlv$ backgrounds
- Relatively low Missing transverse momentum (MET)

What do we do differently?

Analysis Overview

Why is this region largely unexcluded?

- Low Pt leptons large Fake/Non-Prompt lepton background
- Large $WW \rightarrow lvlv$ backgrounds
- Relatively low Missing transverse momentum (MET)

What do we do differently?

Strategy

- Cut based strategy: model independent limits + discovery SRs
- BDT strategy (me!): model dependent exclusion
- Will focus on my work
- Analysis is currently blinded

Major backgrounds and preselection

Major backgrounds and preselection

- Apply a loose preselection before BDT training In words:
 - MET Trigger + MET cut to keep 100% efficiency in triggering
 - 2 Same Flavour Opposite Sign (SFOS) leptons
 - Cuts to reduce FNP lepton background
 - Cuts to enforce ISR topology
 - Veto Z boson decays, veto events with jets from B hadrons (bjets)

BDT Training

- Using the XGBoost package to train BDTs using binary classification
- Kinematics of signals change significantly across full range of △m but similar for adjacent △m

BDT Training

- Using the XGBoost package to train BDTs using binary classification
- Kinematics of signals change significantly across full range of △m but similar for adjacent △m
- So, 5 BDTs are trained, signals grouped based on similar kinematics in key variables
 - Each BDT requires separate optimisation, validation and background estimation
- Log loss as optimisation metric and used for early stopping to prevent overtraining
- KFold cross-validation with 5 folds
 - Will focus on explaining $\Delta m = 40+50$ BDT

Alessandro Ruggiero

Signal Regions BDT Score distribution

FORD

)XF()RI)

Background estimation

Bold cuts provide orthogonality with SR

Background only fit: define control regions targeting: WW

Along with training cuts

Background estimation

Bold cuts provide orthogonality with SR

Background only fit: define control regions targeting: WW and $t\overline{t}$

UNIVERSITY OF

Background estimation

Bold cuts provide orthogonality with SR

• Background only fit: define control regions targeting: WW and $tar{t}$

Validation Regions

Only cuts orthogonal to the training preselection are shown

Validation Regions

Only cuts orthogonal to the training preselection are shown

Exclusion Fit

- Carry out 3 shape fits: electron SRs only, muon SRs only, and using both sets of SRs together.
- Compare the background only prediction and the signal + background prediction to data and extract a CLs value.
- For each signal and each BDT: If $CL_s > 95\%$ we 'exclude' the signal

Exclusion Fit

- Carry out 3 shape fits: electron SRs only, muon SRs only, and using both sets of SRs together.
- Compare the background only prediction and the signal + background prediction to data and extract a CLs value.
- For each signal and each BDT: If CL_s > 95% we 'exclude' the signal
- Draw an exclusion contour:

Exclusion Fit

- Carry out 3 shape fits: electron SRs only, muon SRs only, and using both sets of SRs together.
- Compare the background only prediction and the signal + background prediction to data and extract a CLs value.
- For each signal and each BDT: If $CL_s > 95\%$ we 'exclude' the signal
- Draw an exclusion contour:
- Leading systematics are:
 - For all BDTs: uncertainty on resolution of jet energy
 - At low ΔM: FNP lepton uncertainties
 - At high ΔM: MET uncertainties

Summary and conclusion

- This talk summarised an ongoing ATLAS effort to search for Supersymmetry
 - Targeting small $\Delta m (ilde{\ell}, ilde{\chi}_1^0)$ signals with an ISR jet
- The analysis utilises Machine Learning (BDTs) to carry out binary classification and from score distributions:
 - Define control and validation regions to carry out the background estimation
 - Define signal regions which are then used in a shape fit to provide exclusion limits
- Projects to give a significant improvement on current ATLAS limits in this very interesting region where SUSY can explain the g-2 anomaly and provide a Dark Matter candidate

Backup

Alessandro Ruggiero

Main Backgrounds

- Main Backgrounds are:
 - Diboson -> Sherpa (mix of 2.2.12 and 2.2.2)
 - Leptonic tt ->PowHegPythia8
 - Fakes (at low Pt) -> using Data Driven Fakes estimate

With BDT preselection cuts applied	Background	Percentage
	tt	40%
	VV	30%
	Fakes (Data Driven estimate)	15%
	Ζττ	5%
	Single Top	5%
	Other	5%

Where i is a co

Data Driven Fakes method explanation

- MC Fakes do not model the fake background well at low pt so lots of work put into the Data Driven Fakes estimate
- Define Control sample (Dijet events passing prescaled single lepton triggers) and extract a fake factor using:

Where i is a correlated variable (pt, nbjet for us)
$$F(i) = \frac{N_{\rm ID}(i) - N_{\rm ID}^{\rm Prompt\,MC}(i)}{N_{\rm anti-ID}(i) - N_{\rm anti-ID}^{\rm Prompt\,MC}(i)}$$

- Then apply F to anti ID leptons in the data
- And verify with (one or more) Same Sign VRs
- Work on systematic uncertainty underway
- Everything shown will use the Data Driven Fakes

Training Preselection distributions

Same Flavour with preselection + Bjet, Z peak veto, no BDT score cut

Data/MC for Different flavour

• Can unblind fully and get an idea of modelling in the regions the BDT uses

Training Variables

BDT Diagnostic Plots For first Fold of Am=40+50 BDT

- closer to 1 more similar the distributions

Important variables

• Explain BDT models using SHAP scores

More signal-like

High values of Transverse mass High MET significance

More background-like

High values of MT2 Low subleading lepton Pt

FORD

Diboson Breakdown Using powheg to split diboson into, WW,ZZ,WZ

